Department of Biosciences Integral University

Syllabus for PhD entrance

1. BIOMOLECULES AND THEIR INTERACTION

Structure of atoms, molecules and chemical bonds,Ph, buffer, reaction kinetics, thermodynamic, colligative properties.Composition, structure and function of biomolecules (carbohydrates, lipids, proteins, nucleic acids and vitamins). Stablizing interactions. Bioenergetics, coupled reaction, group transfer, biological energy transducers, Enzymology, isozymes. Conformation of proteins, nucleic acids (DNA & RNA). Metabolism of carbohydrates, lipids, amino acids nucleotides and vitamins.

2. CELL BIOLOGY AND SIGNALLING

Membrane structure and function, Structural organization and function of intracellular organelles, Cell division and cell cycle, Cell Signalling, Hormones and their receptors, cell surface receptor, signalling through G-protein coupled receptors, signal transduction pathways, second messengers, regulation of signalling pathways, cellular communication, general principles of cell communication, Cancer Biology.

3. MOLECULAR BIOLOGY

DNA replication, repair and recombination, RNA synthesis and processing, Protein synthesis and processing, organization of genes and chromosomes: Operon, interrupted genes, gene families, structure of chromatin and chromosomes, unique and repetitive DNA, heterochromatin, euchromatin, transposons, Regulation of Prokaryotic and eukaryotic gene expression, role of chromatin in regulating gene expression and gene silencing.

4. IMMUNOLOGY

Innate and adaptive immune system: Cells and molecules involved in innate and adaptive immunity, antigens, antigenicity and immunogenicity, B and T cell epitopes, structure and function of antibody molecules, generation of antibody diversity, monoclonal antibodies, antibody engineering, antigen-antibody interactions, MHC-molecules, antigen processing and presentation, activation and differentiation of B and T cells, B and T cells, B and T cell receptors, humoral and cell mediated immune responses, primary and secondary immune modulation, the complement system, Toll-like receptors, cell mediated effector functions, inflammation, hypersensitivity and autoimmunity, immune response during bacterial (tuberculosis), parasite (malaria) and viral (HIV)infections, congentinal and acquired immuno-deficiencies

5. DEVELOPMENTAL BIOLOGY

Basic concept of development: Potency, Commitment, Specification, Induction, Competence, Determination and Differentiation; Morphogenetic gradient; Cell fate and Cell lineages ; Steam cell; Genomic equivalence and the Cytoplasmic determinants; Imprinting; Mutants and Transgenic in analysis of development. Morphogenesis and Organogenesis in animal and plants.

6. SYSTEM PHYSIOLOGY-PLANT

Photosynthesis, Respiration and Photorespiration, Nitrogen metabolism, Plant hormones, Sensory photobiology, Solute transport and Photoassimilate translocation, Secondary metabolites, Stress physiology. Plant cell and Tissue culture.

7. SYSTEM PHYSIOLOGY-ANIMAL

Blood and Circulation, Cardiovascular system, Respiratory system, Nervous system, Sense organ, Excretory system, Thermoregulation, Stress and Adaptation, Digestive system, Endocrinology and Reproduction.

8. GENETICS

Mendelian principles, Deviation from Mendelian inheritance, Concept of gene: Allele, multiple alleles, pseudoallele, complementation tests, linkage and crossing over, sex linkage, Gene mapping methods: Linkage maps, tetrad analysis, mapping with molecular markers, mapping by using somatic cell hybrids, development of mapping population in plants. Extra chromosomal inheritance, Microbial genetics, Methods of genetic transfers Human genetics: Pedigree analysis, lod score for linkage testing, karyotypes, genetic disorders, Structural and numerical alterations of chromosomes

9. MICROBIOLOGY

History and Scope of Microbiology, Microbial Diversity, Prokaryotes and Eukaryotes Bacteria, Fungi Algae. Classification Systems. External and Internal structural and chemical composition of cell wall, Microbial Nutrition and growth kinetics. Bacterial Metabolism, Fermentation and anaerobic respiration, Conditions influencing antimicrobial action, Evaluation of antimicrobial agents. Drug Resistance Mechanism of drug resistance. Normal microflora of human body, Host parasite interaction, Nonspecific defense mechanism of Host. Microbialspoilage of food, Food preservation, Food borne diseases. Micrbiology of fermented food. Virology, Distinctive properties of Viruses, Viroids and Prions, Virus Purification, Viral nucleic acid and its replication, Capsid and envelope, Bacterophages. Morphology and structure. Replication: Adsorption, Penetration, Synthesis of nucleic acid and protein, Assembly and release. Temperate phages and Lysogeny. Control of viruses: Interferon, Chemical antimicrobial agents and Antiviral Antibiotics

10. EVOLUTION AND ECOLOGY

Principles and methods of taxonomy, Levels of structural organization, classification of plants, animals and microorganisms: Important criteria used for classification in each taxon; Organisms of health and agricultural importance: Common parasites and pathogens of humans, domestic animals and crops, Molecular evolution, Population genetics, The Environment: biotic and abiotic interactions. Habitat and Niche, Population ecology: Life history strategies (r and K selection) Species interaction: Types of interaction community ecology, Ecological Succession, Ecosystem, Biogeography: Major terrestrial biomes, Applied ecology, Conservation biology

11. METHODS IN BIOLOGY

Isolation and purification of RNA, DNA and proteins, Different separation methods; One and Two dimensional gel electrophoresis, isolectric focusing gels; molecular cloning of DNA or RNA fragments in bacterial and eukaryotic systems; expression of recombinant proteins using bacterial, animal and plant vectors, generation of genomic and cDNA libraries; in vitro mutagenesis and deletion techniques, gene knockout in bacterial and eukaryotic organisms; protein and DNA sequencing method, methods for analysis of gene expression at RNA and protein level, large scale expression analysis, micro array, PCR, RFLP, RAPD and AFLP techniques.Analysis of biomolecules using UV/Visible, fluorescence, circular dichroism, NMR and ESR Spectroscopy, structural determination using X ray diffraction.

12. APPLIED BIOLOGY

Microbial fermentation and production of small and macro molecules. Plant and animal tissue and cell culture methods, Transgenic animals and plants, molecular approaches to diagnosis and strain identification, Genomics and its application to health and agriculture, including gene therapy.Breeding in plants and animals, including marker-assisted selection. Bioremediation and phytoremediation., Biosensors.

13. Statisitcal Methods: Students t test, Chi Square Test, Probability, ANOVA.