ELECTRICAL ENGINEERING 1st Year / Semester I/II

			Eff Ses	ective ssion	from	20	015-16	
Course Code	EE103	Title of The Course	BASIC ELECTRICAL ENGINEERING	ſ	L	Т	Р	С
Pre- Requisite	NONE	Co-Requisite	NONE		3	1	0	4
Objective	 Knowledge and concept of D.C Circuit Analysis and Network Theorems Circuit. Use of Steady State Analysis of Single-Phase AC Circuits AC fundamentals. Knowledge and concept of Three Phase AC Circuits Three phase system and measuring devices. Basic concepts of Power System and Transformer Study of Electromechanical energy conversion devices: AC/ DC Machines. 							
	Course Out	tcomes						
CO1	Know abo	ut the concept of D.C Circ	cuit Analysis and Network Theorems Circuit.					
CO2	Steady State Analysis of Single Phase AC Circuits AC fundamentals.							

CO3	Know about concept of Three Phase AC Circuits Three phase system and measuring devices
COA	

L	001	Steady State Analysis of Single Flase AC Circuits AC fundamentals.
	CO3	Know about concept of Three Phase AC Circuits Three phase system and measuring devices
	CO4	Layout of Power System and transformer
	CO5	Know about Electromechanical energy conversion devices: AC/ DC Machines

_

L ...

No	Content	Contact	Mapped				
110.	content	Hrs.	CO				
	D.C Circuit Analysis and Network Theorems	8	CO1				
1	Circuit concepts: Concept of network, Active and passive elements, linear network, unilateral and bilateral						
	elements, source transformation, Kirchhoff's Law: loop and nodal methods of analysis, star delta transformation.						
	Network theorems: Superposition theorem, Thevenin's theorem, Norton's theorem, maximum power transfer						
	theorem.						
	Steady State Analysis of Single Phase AC Circuits	8	CO2				
2	AC fundamentals: Average and effective value of Sinusoidal waveform, form factor and peak factor, concept of						
	phasors, phasors representation of sinusoidally varying voltage and current, analysis of series RLC circuits.						
	Apparent, active and reactive powers, power factor, causes and problems of low power factor, power factor						
	improvement, resonance, bandwidth and quality factor in series circuit.						
	Three Phase AC Circuits	8	CO3				
3	Three phase system: Its necessity and advantages, meaning of phase sequence, star and delta						
	connections, balanced supply, line and phase voltage/current relationship.						
	Measuring Instruments: Types of instruments: construction and working principle of PMMC, MI type						
	instruments, induction type energy meter.						
	Introduction of Power System:	8	CO4				
4	General layout of electrical power system, standard generation, transmission and distribution voltage						
	levels concept of grid Magnetic circuit : Concepts analogy between electric and magnetic circuit						
	Single Phase Transformer: Principle of operation, construction, emf equation, equivalent circuit.						
	losses efficiency Introduction to auto transformer						
	Flactromachanical energy conversion devices:	8	CO5				
5	DC Machines : Types, emf equation of generator and torque equation of motor, applications. Three	0	005				
-	De Induction Motor: Types, entirequation of generation and torque equation of motor, applications. Three Desse Induction Motor: Types, principle of operation, applications, Single Desse Induction Motor:						
	Principle of operation and introduction to methods of starting applications. Three D hage Symphroneus						
	Principle of operation and introduction to methods of starting, applications. Three Phase Synchronous						
	Principle of operation of alternator, synchronous motor, applications.						
Dafa	nonoos Doolise						
Kele 1 V	Deltare "Deinciela of Electrical Energy" DUL 2000						
1. V	Deltoro, Principle of Electrical Engg. PHI, 2009						
2. M	A Mallick, Dr. I. Ashraf, "Fundamental of Electrical Engg," CBS Publishers, 2010.						
3. A	Hussain, "Basic Electrical Engg" Dhanpat Rai & sons, 2007						
4. I J	Nagrath, "Basic Electrical Engg", TMH, 2010.						
PO	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO 1 PSO2 PSO	D3 P	SO4				
\checkmark							

CO														
CO1	3	3	2	1	1	3				3	3	3	2	3
CO2	3	3	3	2	1	1				2	3	2	2	3
CO3	3	2	1	1	2	2	3			3	2	2	2	3
CO4	3	2	2	2	3	3				2	3	2	2	3
CO5	3	1	1	1	1	2	1			2	3	2	2	3

ELECTRICAL ENGINEERING 2nd Year/ 3rd Semester

				Effectiv Session	ve fro	om	16-17	
Course Code	EE201	Title of The Course	LINEAR NETWORK AND SYSTEMS.		L	Т	Р	C
Pre- Requisite	NONE	Co-Requisite	NONE		3	1	0	4

1

Objective	OBJECTIVE
	Course Outcomes
CO1	For a given network, would be able to apply the knowledge of mathematics, science, and engineering to the analysis and design of electrical circuits, Identify, formulate, and solve engineering problems in the area electrical circuits & systems.
CO2	For a given system with dc and ac circuits, describe the different network theorems, would be able to apply, solve and verify the solutions using modern tools for lifelong learning like MATLAB.
CO3	For given a system with two port networks described in standard form, would be able to characterize, modeling, analyze, and verify the network in terms of all network parameters.
CO4	For given a system with RL, RC, and RLC circuits, would be able to understand, perform, formulate, and solve the differential equations for RL, RC, and RLC circuits and analyze the characteristics of the system.
CO5	For given a system description, would be able to explore and apply to alternate system description, and implement using basic blocks for network transfer function in s-domain and Two port networks.

NT		Contact	Mapped
No.	Content	Hrs.	CO
		8	CO1
1	Kirchhoff's law, Source transformation, loops variable analysis, node variable		
	analysis, Super Mesh and Super Node, AC Network theorems: Superposition,		
	Thevenin's, Norton's, Maximum power transfer theorems, Reciprocity,		
	Millman's and Tellegen's theorem.		
	Transient and steady state analysis for R-L, R-C and RLC circuits. Series and	8	CO2
2	parallel resonance (Transient and steady State), Initial value and final theorem		
	Use of Laplace transform in circuit analysis, Solution of differential equations.		
	Lap lace transform of complex waveform.		
	Concept of poles and zeros, Restrictions on pole and zero location for driving	8	CO3
3	point function and transfer function, Positive real function: Definitions and		
	properties, Hurwitz Polynomial, Synthesis of RC, LC and RL Networks using		
	Cauer and Foster forms.		
	Two port networks, two port parameters, Inter-Conversion of two port	8	CO4
4	Parameters, Interconnections of Two port networks, Reciprocity and Symmetry,		
	Image impedance, Characteristic impedance, T-pie transformation.		
5	Introduction to graph theory, Definitions- Graphs, Tree, Co- tree, Path and Loop,	8	CO5
	Concept of Planner and non planner network, Incidence, Cut-set, Tie-set matrices		
	for planer network, loop and nodal analysis, Duality.		
Refe	rences Books:		
1. M	.E.Van Valkenburg, Network Analysis, PHI		

2. J.A.Eummister, Electric Circuits, Schaum Series, Fr	J.A.Edminister, Electric Circ	cuits. Schaum S	eries. PH
--	---	-----------------	-----------

3. W.H. Hayt and Jack.E.Kammerly, Engineering Circuit Analysis, Tata Mc Graw Hill 4. A.Hussain, Network and Systems, Khanna publications

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	3	2	1		1	1	1		2	3	3	2	2
CO2	3	2	3	3	2	2	1	2		1		1	3	3	3	2
CO3	3	3	2	3	2	1							3	2	2	3
CO4	3	2	2	3	1			1		1		1	3	3	2	3
CO5	3	3	3	3	2	1		1		1			3	2	2	3

ELECTRICAL ENGINEERING 2nd Year/3rd Semester

				Effective	from			
				Session				
Course Code	EE 203	Title of The Course	Electro Mechanical Energy Conversion	on-I	L	Т	Р	С
Pre-Requisite	NONE	Co-Requisite	NONE		3	1	0	4

Knowledge and concept of D.C Circuit Analysis and Network Theorems Circuit.

• Use of Steady State Analysis of Single Phase AC Circuits AC fundamentals.

Objective • Knowledge and concept of Three Phase AC Circuits Three phase system and measuring devices.

- Basic concepts of Power System and Transformer
 Study of Electromechanical energy conversion devices: AC/ DC Machines.

	Course Outcomes
CO1	Know about the concept of D.C Circuit Analysis and Network Theorems Circuit
CO2	Steady State Analysis of Single Phase AC Circuits AC fundamentals.
CO3	Know about concept of Three Phase AC Circuits Three phase system and measuring devices
CO4	Layout of Power System and transformer
CO5	Know about Electromechanical energy conversion devices: AC/ DC Machines

No.	Content	Contact	Mapped
		Hrs.	CO
	Principle of EMEC Introduction,	8	CO1
1	Energy in electromagnetic system, Flow of energy in electromechanical devices, Energy in magnetic		
	field and co-energy, Dynamics of electromechanical systems, singly excited systems, Doubly Excited.		
	System, Force and torques in systems with permanent magnets.		
	D.C. Machines	8	CO2
2	Construction Features, EMF and Torque equations, Armature windings, Armature Reaction,	,	
	Demagnetizing and cross magnetizing M.M.F., Interpole and compensating windings, Commutation,	,	
	characteristics of D.C. generator.		
	Characteristics of D.C. motors, Starting of D.C. motors, Starter step calculation for a D.C. shunt motor,	8	CO3
3	speed control of D.C. shunt motors, braking of D.C. motors, Losses, efficiency and testing of D.C.		
	machines test on D.C. machines.		
	Transformers	8	CO4
4	Review of Single Phase Transformers, Transformer Constructions and Practical Considerations,	,	
	Equivalent circuit, Phasor diagram, Transformer testing, Efficiency and Voltage regulation, All day		
	Efficiency, Per unit values, Autotransformer.		
5	Three phase transformers connection, 3 to 6 phase conversion, Scott connection, Parallel operation of	8	CO5
	transformer, Three winding transformer, Tap changing transformer for special purposes.		
Refe	erences Books:		
1. E	lectric Machines, M.A.Mallick, IK International Pvt. Ltd New Delhi,2009		
2. E	lectrical Machinery, Fitzgerald, Kingsley (McGraw Hill),6 th Edition,2020		
3. E	lectrical Machines and their Applications, J Hind Marsh,4 th Edition,1984		
4. F	undamental of Electrical Machines, B.R. Gupta & V. Singhal ,New Age International Pub., 2005		
5. E	lectric Machinery and Transformers, I.L.Kosow, PHI,2007		
6. E	lectrical Machine, I J Nagrath and D P Kothari, TMH,2004		

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	3	3	2	1	1	3						3	3	2	1	3
CO2	3	3	3	2	1	1						2	3	2	2	2
CO3	3	2	1	1	2	2	3					3	2	2	1	3
CO4	3	2	2	2	3	3						2	3	3	1	2
CO5	3	1	1	1	1	2	1					2	3	1	2	2

ELECTRICAL ENGINEERING 2nd YEAR/3rd YEAR

				Effective Session	from		2016-17	
Course Code	EE-205	Title of The Course	Solid State Devices & Circuit		L	Т	Р	С
Pre- Requisite	NONE	Co-Requisite	NONE		3	1	0	4

Objective

	Course Outcomes
CO1	Analyze and designing concept of special purpose diodes for different types of operation for industrial
	application purpose. Understand the advancement in conductivity of semiconductors material. Analysis the
	different regions in which BJT operates and their applications as a switches, amplifiers etc.
CO2	Understand the advancement in transistors like JFET, MOSFET, PMOS, NMOS, CMOS etc. and their
	various types' applications in Industries. Analyze the frequency response of these devices as different
	amplifier applications. To Understand how the gain of amplifier effected with frequency changes and their
	applications.
CO3	To develop and analyze the performance of small signal amplifiers and large signal amplifiers (Power
	amplifiers). To understand and implement the various power amplifier in applications as transmitter and
	receiver in communication purpose.
CO4	Developing the concept of feedback amplifiers, their different topologies and Implement it for various
	applications. To analyze their stability and their responses for different applications.
CO5	To analyze the design considerations of the active and passive filters. How to develop the various orders of
	filters and their industrial applications. To understand the constructional difference and working of various
	types of oscillators. How the oscillators can be developed and their use in industries.

No	Content							
110.	Content	Hrs.	CO					
	Special Diodes, LED, Zener, Varactor, Schottky barrier, photo diode, and tunnel diode: their	8	CO1					
1	constructions and characteristics. Bipolar Junction Transistors, biasing of BJT, equivalent circuit,							
	Transistor as a switch, cut off and saturation region, complete static characteristics of BJT,							
	Darlington pair.							
	Field Effect transistor: Structure and physical operation. Enhancement and depletion types	8	CO2					
2	MOSFET, Classification of MOS: NMOS, PMOS and CMOS I/V characteristics, Biasing of FET,							
	Low and high frequency response of common source and common emitter configuration, Common							
	base and Common gate cascade configurations, CC-CE cascade							
	Small signal amplifiers: BJT and MOSFET, Frequency response improvement, Classification of	8	CO3					
3	amplifiers: Class A, Class B, Class C amplifiers, Power amplifiers, push pull amplifiers, DC							
	amplifier, coupling methods.							
	Basic concept, General feedback structure, properties of negative feedback, four basic feedback	8	CO4					
4	topologies: series-series, series-shunt, shunt-series and shunt-shunt, determination of Loop gain,							
	stability analysis, wave shaping circuits.							
5	Active filters, Oscillators, condition for oscillation, Basic principles of sinusoidal oscillator, RC	8	CO5					
	oscillators, Phase Shift oscillator, Wein bridge oscillator, Hartley and Colpitt's oscillator, Crystal							
	Oscillator, Operational amplifier: Characteristics and application							
Tor	t hooks							
	t DOUKS; S. S. dur and K. C. Surith, "Minnerlaturnic simulity" Orfend Hubinsonite Duran (India), 2. D. D. Simul	0 D C:						
1. A	.5. Sedra and K.C. Smith, Wicroelectronic circuits", Oxford University Press (India). 2. B.P. Singh	& K. SI	ngn,					
Elec	tronics Devices & Integrated Circuits, Pearson.							

2. Millman, J. and Grabel, A., 'Microelectronics',/McGraw Hill.

References Books:

1. Bell, David A,'Electronic Devices & Circuits',Prentice Hall (India) 4th Edition.

2. Nair, B. Somanathan, 'Electronics Devices & Applications', Prentice-Hall (India)

3. Neamen, Donald A., 'Electronic Circuit Analysis & Design', Tata McGraw Hill.

4. Sedra, 'Micro Electronics Circuits', Oxford University Press.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	2	3	3	1	1	1		2	2	2	2	2	2
CO2	3	3	2	3	2	3	2						2	2	1	2
CO3	3	2	3	2	2	2	1	1			1	1	2	3	2	2
CO4	3	1	1	1	2	2	2						2	2	1	2
CO5	3	1	1	1	2	2	2						2	3	1	3

ELECTRICAL ENGINEERING 2nd YEAR/3rd SEMESTER

		Effe	ctive from			
		Sess	ion			
EE- 207	Title of The Course	Fundamentals of EMFT	L	Т	Р	C
NONE	Co-Requisite	NONE	3	1	0	4
 To spa To To ma 	understand the students a tice and obtain the solutio analyze the electrostatics realize and examine the gnetic materials	about Coordinates systems. To develop ability n of electromagnetic problems by Vector theor s problems by applying fundamental law's. magneto statics problems and response the bel	for analysis rems and Ope navior of mag	of three- erators.	dimensio	onal ferent
	EE- 207 NONE • To spa • To • To ma	EE- 207 Title of The Course NONE Co-Requisite • To understand the students space and obtain the solutio • To analyze the electrostatic: • To realize and examine the magnetic materials	EE- 207 Title of The Course Fundamentals of EMFT NONE Co-Requisite NONE • To understand the students about Coordinates systems. To develop ability space and obtain the solution of electromagnetic problems by Vector theor • To analyze the electrostatics problems by applying fundamental law's. • To realize and examine the magneto statics problems and response the beh magnetic materials	Effective from Session EE- 207 Title of The Course Fundamentals of EMFT L NONE Co-Requisite NONE 3 • To understand the students about Coordinates systems. To develop ability for analysis of space and obtain the solution of electromagnetic problems by Vector theorems and Ope • To realize and examine the magneto statics problems and response the behavior of mag magnetic materials	EE- 207 Title of The Course Fundamentals of EMFT L T NONE Co-Requisite NONE 3 1 • To understand the students about Coordinates systems. To develop ability for analysis of three- space and obtain the solution of electromagnetic problems by Vector theorems and Operators. • • To analyze the electrostatics problems by applying fundamental law's. • • • To realize and examine the magneto statics problems and response the behavior of magnetic file magnetic materials •	Effective from Session Effective from Session EE- 207 Title of The Course Fundamentals of EMFT L T P NONE Co-Requisite NONE 3 1 0 VONE To understand the students about Coordinates systems. To develop ability for analysis of three-dimension space and obtain the solution of electromagnetic problems by Vector theorems and Operators. To analyze the electrostatics problems by applying fundamental law's. To realize and examine the magneto statics problems and response the behavior of magnetic fields in diff magnetic materials S

ve	•	To recognize the concepts of Gauss Law and Maxwell equation by investigation in real time domain. To learn	
		the Concepts of Displacement Current and Wave Propagation.	

• To execute the analysis of Guided Waves and transmission lines by various parameters and propagation constant .

	Course Outcomes
CO1	Given a physical quantity, students shall be able to represent this in vector and scalar form, identify type of system, apply vector algebra, and formulate the expression in different coordinates and solve using vector theorems.
CO2	Given a electrostatic problems of passive elements with sources, student shall be able to analyze and evaluate the problems using Gauss laws and Divergence theorem.
CO3	For a given magneto-static situation, student shall be able to generate its analytical response by Biot Savart's law and examine , analyze and evaluate the characteristics by Maxwell's Equation and Boundary Conditions
CO4	For a given Time varying function, students shall be able to identify its characteristics and for Wave Propagation, select suitable design of application of Maxwell's equation, develop various combination for Power by Pyonting Vector and explain the functions of its main components.
CO5	Given a Guided Waves and Transmission line, student shall be able to define its parameters, solve / analyze , and modify its form

No.	Content	Contact	Mapped
		Hrs.	CO
	Review of scalar and vector field, Co-ordinates systems and their transformation (Cartesian,	8	CO1
1	cylindrical and spherical).		
	Vector representation of surfaces, Del operator, Gradient of Scalar, Divergence of vector and		
	Divergence theorem, Curl of vector and Stocks Theorem, Laplacian of Scalar.		
	· Electrostatic Fields:	8	CO2
2	Coulombs law and field Intensity, Electric flux density, Gauss's law and its application, Electric		
	potential, Electric dipole and flux lines, Energy density.		
	Introduction to conductors, Dielectrics polarization, Continuity equation, boundary conditions,		
	Poisson's and Laplace's equation.		
	Magneto-static Fields:	8	CO3
3	Biot-Savarts Law, Ampere's circuit law, Magnetic flux density, Magnetic scalar and vector		
	potentials.		
	Force due to magnetic fields, Lorentz-force equation, Magnetic torque and moment Magnetization		
	in material, Boundary conditions, Energy density.		
	Time-Varying Fields & Wave propagation:	8	CO4
4	Faraday"s law, displacement current, Maxwell's equation in integral and point form, Time varying		
	potential, Time Harmonic Fields.		
	Propagation of uniform plane waves in free space, dielectric and conductors, Pyonting theorem and		
	power flow, Reflection of plane wave at Normal Incidence.		
5	Guided waves & Transmission line:	8	CO5

Int	Introduction to guided waves, Rectangular waveguide.															
Tra	ansmissi	ion lin	e para	meter	, Tran	smissi	on lin	e equa	ations,	Charac	teristic	impeda	nce, pro	opagatio	n	
coi	constant (for lossless lines and Distortion-less lines), Input impedance, reflection coefficient,															
Sta	Standing wave ratio and Power. Open and short circuited lines.															
References Books:																
1. Elem	. Elements of Electromagnetics- "M.N.O. Sadiku", oxford University Press															
	. Elements of Electromagnetics - Wirvio. Saura , oxiora Oniversity (1655															
2. Elect	Electromagnetic waves and Radiating systems- E.C. Jorden, D.G. Balmein															
	. Electromagnetie waves and Radiating systems- E.C.Jorden, D.O.Daimeni															
3 Engi	neering	Electr	omagr	netics-	"W H	Havt	& I A	Buck	" TM	Н						
5. Engi	licering	Liceur	onnagn	lettes		.iiujt	ω υ.Π Ι	. Duck	, , , , , , , , , , , , , , , , , , , ,							
4 Elect	romagn	etic_ I	EDK	raile	RCK	eith										
T. LICCI	iomagn	cuc- J	.I .D.N	naus,	N.C.N	CIUI										
	DO1	DOA	DOA	DO 1	D O F	DO		DOO	DOA	DO1 0	D 011	DOIA	DGO1	DGOA	PGOA	DCO 4
РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	3	2	1	2	1							2			2
CO2	3	3	1	1	2								1	2	1	2
CO3	3	3	1	1	2								1	3		2

3: Strong contribution, 2: average contribution, 1: Low contribution

CO4

CO5

ELECTRICAL ENGINEERING 2nd Year/ 3rd Semester

				Effective Session	from	2	2016-17	
Course Code	EE 209	Title of The Course	Electrical Measurement & Measuring Instruments		L	Т	Р	С
Pre- Requisite	None	Co-Requisite	None		3	1	0	4

Objective	To understand the measurement system, measurement methods and errors, measurement of electrical quantities To understand three phase power measurement; working of thermocouple, electrostatic and rectifier type instruments; energy meter and instrument transformer To understand measurement of low, medium and high resistances, use of ac bridges and Q meter To understand use of ac potentiometer; measurement of speed, frequency and power factor To understand digital measurement of electrical quantities; CRO and its application
-----------	--

	Course Outcomes
CO1	Adopt the methods of measurement, investigate the errors in measurement, analyze and rectify; perform analog
	measurement of electrical quantities; contribute in related development
CO2	Perform three phase power measurement; use thermocouple, electrostatic, rectifier type instruments, energy meter and
	instrument transformer for measurement; identify errors in energy meter and adopt remedies; adopt extension of
	instrument range using instrument transformer; contribute in related development
CO3	To perform measurement of low, medium and high resistances; perform measurement of inductance and capacitance
	using ac brides; adopt use of Q meter, contribute in related development
CO4	To adopt use of ac potentiometer; perform measurement of speed, frequency and power factor; contribute in related
	development
CO5	To perform digital measurement of electrical quantities; adopt application of CRO, dual trace and dual beam
	oscilloscopes; contribute in related development

NT.	Grantant	Contact	Mapped
INO.	Content	Hrs.	co
	Philosophy of measurement: Methods of measurement, measurement system, classification of	9	CO1
1	instrument system, characteristics of instrument and measurement system, error in measurement and its		
	analysis. Analog measurement of electrical quantities: PMMC type Instruments, Moving Iron type	l e	
	Instruments, Electrodynamics type Instruments' three phase wattmeter, error and remedies in		
	wattmeter.		
	Power measurements in three phase system, Thermocouple, electrostatic and rectified type ammeter	·8	CO2
2	and voltmeter, Energy meter, error and remedies in energy meter. Instrument transformer and their		
	application in the extension of instruments range.		
	Measurement of parameter: Different methods of measurement of low, medium and high resistances,	7	CO3
3	measurement of inductance and capacitance with the help of AC bridges, Q-meter.		
	AC Potentiometer: Polar type and co-ordinate type AC potentiometer, application of AC potentiometers	8	CO4
4	in electrical measurement. Measurement of speed, frequency and power factor.		
_	Digital measurement of electrical quantities: concept of digital measurement, block diagram, study of	8	CO5
5	digital voltmeter, frequency meter, Cathode ray oscilloscope: Basic CRO circuit (block diagram),		
	cathode ray tube (CRT), and its components, application of CRO in measurement, Lissajous pattern,		
	Dual trace and dual beam oscilloscopes.		
Refe	erences Books:		
1. E	.W. Golding & F.C. Widdis, "Electrical measurement & Measuring Instrument", A. W. Wheeler & Co. F	vt. Ltd.	India.
2. A	.K. Sawhney, "Electrical & Electronics Measurement & Instrument", Dhanpat Rai & Sons, India.		
3. M	I.B. Stout, "Basic Electrical Measurement" Prentice hall of India, India.		
4. Fe	orest K. Harries," Electrical Measurement", Willey Eastern Pvt. Ltd. India.		

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	1	2	3							2	2	2		3
CO2	3	3	1	2	3							2	2			3
CO3	3	1	1		3							2	2			3
CO4	3	1	1		3							2	2			3
CO5	3	1	1		3							2			2	3

ELECTRICAL ENGINEERING 2nd Year/ 3rd Semester

			Effe	ctive from	m Ses	sion 20	016-17	
Course Code	EE 211	Title of The Course	Electro Mechanical Energy Conversion II		L	Т	Р	С
Pre-Requisite	NONE	Co-Requisite	NONE		3	1	0	4

	Knowledge of principle of operation of three phase ac motors
	□ Identify different ac motors on the basis of characteristics
	□ Analyze different ac machines
Objective	\Box To evaluate the performance of ac machines
	□ Knowledge of parallel operation of ac generators

	Course Outcomes
CO1	Knowledge of different types of three phase induction machines
CO2	Analyze the induction machines performance under loading condition
CO3	Evaluate the performance of single phase ac machines
CO4	Knowledge of three phase synchronous machines
C05	Evaluate the performance of synchronous machines

No	Content	Contact	Mapped
110.	Content	Hrs.	CO
	Three phase Induction Machine	9	CO1
1	I: Constructional features, Rotating magnetic field, Principle of operation Phasor diagram, equivalent circuit,		
	torque and power equations, Torque- slip characteristics, no load & blocked rotor tests, efficiency, Induction		
	generator & its applications.		
	Three phase Induction Machine- II:	7	CO^{2}
2	Starting Deep bar and double cage rotors Cogging & Crawling Speed Control (with and without FME injection	/	02
2	in rotor circuit).		
	Single phase Induction Motor:	8	CO3
3	Double revolving field theory, Equivalent circuit, No load and blocked rotor tests, Starting methods, repulsion		
	motor. AC Commutator Motors: Universal motor, single phase a.c.series compensated motor, stepper motors.		
	Synchronous Machine I:	8	CO4
4	Constructional features, Armature winding, EMF Equation, Winding coefficients, equivalent circuit and Phasor		
	diagram, Armature reaction, O. C. & S. C. tests, Voltage Regulation using Synchronous Impedance Method, MMF		
	Method, Potier's Triangle Method, Parallel Operation of synchronous generators, operation on infinite bus,		
	synchronizing power and torque co-efficient.	_	
5	Synchronous Machine II:	8	CO5
	Two Reaction Theory, Power flow equations of cylindrical and salient pole machines, operating characteristics.		
	Synchronous Motor:		
	Starting methods, Effect of varying field current at different loads, V - Curves, Hunting & damping, synchronous		
	condenser.		
Refe	rences Books:		
1. D.	P. Kothari & I.J. Nagrath, 'Electric Machines', Tata Mc Graw Hill,2004.		
2. As	shfaq Hussain, 'Electric Machines', Dhanpat Rai & Company,2010.		
3. Fi	tzerald ,A.E., Kingsley and S.D.Umans, 'Electric Machinery', MC Graw Hill,2014.		
4. P.	S.Bimbhra, 'Electrical Machinery', Khanna Publishers,2003		
5. P.	S. Bimbhra, 'Generalized Theory of Electrical Machines', Khanna Publishers ,1995		

6. M.G.Say, 'Alternating Current Machines', Pitman & Sons,3rd Edition, 1995.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2		1									2		2	3
CO2	3	2		1									2	3	2	2
CO3	3	1										2	2	3	2	3
CO4	3	2										1	2	3	2	3
CO5	3	2					1						2	3	3	2

ELECTRICAL ENGINEERING

				Effectiv	e fror	n		
				Session				
Course Code	EE	Title of The	Numerical Analysis and Applic	ations	L	Т	Р	С
Course Coue	213	Course						
Pre-Requisite	NONE	Co-Requisite	NONE		3	1	0	4

Objective • Identify different ac motors on the basis of characteristics • Analyze different ac machines • To evaluate the performance of ac machines • Knowledge of parallel operation of ac generators	Dijective
--	-----------

	Course Outcomes
CO1	Knowledge of different types of three phase induction machines
CO2	Analyze the induction machines performance under loading condition
CO3	Evaluate the performance of single phase ac machines
CO4	Knowledge of three phase synchronous machines
CO5	Evaluate the performance of synchronous machines

No	Contont	Contact	Mapped
INO.	Content	Hrs.	CO
	Errors and approximations	8	CO1
1	Error definitions, accuracy and precision, round off and truncation errors, estimation, error		
	propagation.		
	Roots of equations- Bracketing methods, open methods like Newton- Raphson, Secant		
	etc.		
	Finite differences- Forward differences, Back ward differences, Central differences.		
	Solutions of simultaneous linear algebraic equations	8	CO2
2	Methods of elimination, Gauss elimination, Methods of Relaxation, iterative method		
	Matrix inversion, Gauss seidel, LU decomposition methods.		
	Curve fitting	8	CO3
3	Least squares regression- Linear, Polynomial, Nonlinear. Interpolation, Ordinary		
	difference operators E&D, Fourier series approximation.		
		8	CO4
4	Numerical differentiation, Numerical integration- Newton cotes, Gauss quadratures.		
5	Numerical solutions for ordinary differential equations	8	CO5
	Methods of successes approximation, Euler, Modified Euler, Runge-Kutta, Adaptive		
	Runge-Kutta, Miline method,		
Refe	erences Books:		
1. J.	Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, ISBN 0-387-90)420-4	
2. L.	N. Trefethen and D. Bau, Numerical Linear Algebra, Society of Industrial and Applied Mat	hematics	5
3. C.	T. Kelley, Iterative methods for linear and nonlinear equations, Society of Industrial and Ap	plied	
Math	nematics		

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	2		1									1		1	2
CO2	3	2					1							2		2
CO3	3	1										2		2		3
CO4	3	2										1	2		2	2
CO5	3	2					1							3		2

ELECTRICAL ENGINEERING 2nd Year/4th Semester

				Effective f	from Sea	ssion E	E-2016-1	7
Course Code	EE217	Title of The Course	Signal System Analysis		L	Т	Р	C
Pre-Requisite	NONE	Co-Requisite	NONE		3	1	0	4

Objectives	 Demonstrate an understanding of the fundamental provide the second sec	operties of linear systems ze and predict the behavior of linear time invariant systems.
------------	--	---

	Course Outcomes
CO1	Understand mathematical description and representation of continuous and discrete time signals and systems.
CO2	Develop input output relationship for linear time invariant system and understand the convolution operator for continuous and discrete time system.
CO3	Understand and resolve the signal in frequency domain using Fourier series and Fourier transforms.
CO4	Understand the limitations of Fourier transform and need for Laplace transform and develop the ability to analyze the system in s- domain.
CO5	Analyze the discrete time signals and system using DTFT, DFT and Z

No	Contont	Contact	Mapped
INO.		Hrs.	CO
1	Formalizing Signals: Continuous-time/discrete-time, Periodic/non-periodic, even/odd, energy/power, deterministic/ random, Unit step, Unit ramp, Unit impulse, Sinusoid, complex exponential signals. Signal Properties: Periodicity, absolute integrability, determinism and stochastic character. System properties: Linearity, additivity and homogeneity, Scaling, shift invariance, causality. Continuous and discrete time linear shift invariance system: The impulse response and step response, convolution, input-output behavior.	8	CO1
2	Fourier Transform Analysis Fourier series representation, Exponential and compact trigonometric form of Fourier series, Fourier symmetry, Fourier Transform, convolution/ multiplication and their effect in frequency domain, magnitude and phase response, Fourier domain duality, inverse Fourier transform, Application to circuit analysis, Dirichlet's condition.	8	CO2
3	Discrete Fourier Transform Discrete time Fourier transform (DTFT), Discrete Fourier transform (DFT), Parsevals theorem, properties convergence, Sampling theorem and its implication, Reconstruction: Ideal interpolator, zero order hold, aliasing and its effect, Relation between continuous and discrete time system.	8	CO3
4	Laplace Transform Laplace Transform for continuous time signals and systems: The notion of Eigen function of LSI system, region of convergence, system functions, poles and zeros of system functions and signals Convolution theorem, Laplace domain analysis, Waveform synthesis, solution to differential equation and system behavior.	8	CO4
5	Z-Transform Analysis: Z Transform for discrete time signal and system, Eigen function, region of convergence ,system function, poles and zeroes of system sequences, Z domain analysis, solution of difference equation, pulse transfer function	8	CO5
Text 1. S.I	Books: H. Saeed, Faizan Arif Khan, "Basic System Analysis" 2nd Edition, Katson Publishing Delhi.		
2. A.	V. Oppenhiem, A.S. Wilsky and I.T. young, "Signals & Systems", Prentice Hall, 1983		
3. M	E Van-Valkenberg; "Network Analysis", Prentice Hall of India.		
4. A. 5. Cł	Anand Kumar, "Signals & Systems", PHI oudhary D. Roy, "Network & Systems", Wiley Eastern Ltd.		
Refe	rences Books:		
1. Da	wid K. Cheng; "Analysis of Linear System", Narosa Publishing		
2. Do	onald E. Scott, "Introduction to circuit Analysis" Mc. Graw Hill		
3. B.	P. Lathi, "Linear Systems & Signals" Oxford University Press, 2008.		
4. I	J. Nagrath, S.N. Saran, R. Ranjan and S. Kumar, "Signals and Systems", Tata Mc. Graw Hill		

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
	2	2		2		1			1	1		1	2			2
COI	3	3		2		1			1	1		1	2			3
CO2	3	3	2	2					1	1		1		2		2
CO3	3	3	2	2		1			1	1		1			2	2
CO4	3	3	2	2		1			1	1		1		2		2
CO5	3	3	2	2		1	1		1	1		1		2		2

ELECTRICAL ENGINEERING 2nd Year/4th Semester

				Effective Session		from	2016-17	,				
Course Code	EE221	Title of The Course	Electrical Engineering Materials	L		Т	Р	С				
Pre- Requisite	NONE	Co-Requisite	NONE	3		1	0	4				
Objectives	 To To ma Tc poi Tc To pro 	apply the knowledge of r understand the impact nufacturability and sustai how the properties of a int of view. realize the potential of so learn latest techniques, so pocesses.	naterial science engineering. of realistic constraints such as ecor nability. conducting, insulating, dielectric and mag emiconducting devices with their application kills, and modern engineering tools nece	omic, envi netic materi on. ssary for ele	ironm ials fr	ental, om ele ıl engir	safety, ctrical e neering	reliability ngineerin fabricatio				
CO1	Course Out	tcomes	ugh understanding of the electrical n	onerties a	nd ch	aracte	ristics (of variou				
	no provide students with a thorough understanding of the electrical properties and characteristics of variaterials used in the electrical appliances, devices, instruments and in the applications associated variateriation, transmission and distribution of electric power.											
CO2	To provide materials u generation	e students with a thoro used in the electrical , transmission and distr	ugh understanding of the electrical pr appliances, devices, instruments and ibution of electric power.	operties and in the a	nd ch pplic	aracte: ations	ristics o associa	of variou ated with				
CO3	To provide	e students with a moder	ate level understanding of the physics	behind the	semi	condu	ctors.					
CO4	To provide materials u generation,	e students with a thoro used in the electrical a , transmission and distr	ugh understanding of the electrical prappliances, devices, instruments ar ibution of electric power.	roperties and in the a	nd ch applic	aracte	ristics o associ	of various ated with				
CO5	An unders fabrication going for h	tanding of the electric based industries and igher studies and also t	cal engineering material science ess also motivate them to do innovative o work in R & D with scientific enthu	ential for characteriz siasm	them zatio	to w base	vork in d resea	differen rch while				
No. Contont							Contac	tMapper				

No	Content	Contact	mapped
110.	Content	Hrs.	CO
	Classification of Materials:	8	CO1
1	Metals and alloys, polymers, conducting materials, characteristic of good conductors, commonly used conducting materials,		
	smart materials, fuel cell, super alloys, memory alloys, degradation of materials,		
	Dielectrics, Insulating and Conducting Materials	8	CO2
2	Dielectric strength, factor affecting strength, polarization, dielectric loss, Types of capacitor, Insulating & Dielectric Materials		
	- Properties of insulating materials, classification of insulating materials, Piezoelectricity, Ferro electricity, Principle and		
	Applications of Optical Fiber, Material for OH lines and UG cables, Fuse, soldering, Effect of temperature on transformer oil		
	Semiconductors and their Applications	8	CO3
3	Types of semiconductor, direct and indirect band gap, semiconductor application and advantages of semiconducting devices,		
	photo conducting cell, Hall effect generator, MHD generator, LEDs, photodiode, Introduction to LCD.		
	Magnetic Materials and their Applications:	8	CO4
4	Basic concepts and definitions, origin of magnetism, dia, Para, Ferro, anti Ferro, ferri magnetism, Curie Temperature,		
	Hysteresis and its significance, soft and hard magnetic materials, ferrites, silicon steel, their properties and uses, magnetic		
	resistance.		
5	Fabrication and Characterization of Materials:	8	CO5
	Planar process,, lithography, etching, spin coating, sputtering, CVD, carbon nanotube, nanowires (synthesis, properties and		
	applications), Material characterization techniques such as scanning electron microscopy, transmission electron microscopy,		
	Scanning tunneling microscopy, atomic force microscopy, differential scanning calorimetry.		

1. A. J. Dekker, Electrical Engineering Materials, PHI.

2. C.S Indulkar & S.Thiruvegada, An introduction electrical Engg Materials, S. Chand & Co.

3. S.O Kasap, Principles of Electronic Materials & Devices, TMH

4. L.V Azaroff, Introduction to Solids, Mc Grow Hill Company

5. Charles Kittle, Quantum theory of Solids, John Wiley and Sons

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2		1									2	3		1
CO2	3	2											3	3		1
CO3	3	2		2								3	1	3		1
CO4	2	1										3	2	2		2
CO5	3		3									1	3	3		

T

ELECTRICAL ENGINEERING 3rd Year/5th Semester

				Effectiv from Se	ve essior	1	2017-18	
Course Code	EE301	Title of The Course	CONTROL SYSTEMS		L	Т	Р	С
Pre- Requisite	Linear Network& Systems EE 201	Co-Requisite	None		3	1	0	4

Objectives	 To learn the concept of transfer function and mathematical modeling of systems. To get the knowledge of first order and second order system. To gain information of the system. To evaluate the stability of the system using Nyquist stability criterion To design the compensator and also study of state space analysis.
------------	---

	Course Outcomes
CO1	To learn the concept of transfer function and mathematical modeling of systems.
CO2	To get the knowledge of first order and second order system.
CO3	To gain information of the system.
CO4	To evaluate the stability of the system using Nyquist stability criterion
CO5	To design the compensator and also study of state space analysis.

No.	Content	Contact Hrs.	Mapped CO
1	Input/ Output Relationship Introduction to control system, Open and closed loop control system, Mathematical modeling of physical systems, Transfer function of electrical and mechanical system, Analogous systems, Block Diagram Reduction Algebra and signal flow graph, Mason's gain formula.	8	CO1
2	Time Domain Analysis Time domain criteria; Test Signals; Transient and steady state response of first and secondorder feedback systems; Performance indices; Response analysis with proportional, Proportional- Derivative (PD) controller, Proportional-Integral (PI) controller and Proportional- Integral –Derivative (PID) controller.	8	CO2
3	Stability, Algebraic Criteria and Frequency response Analysis Asymptotic and conditional stability, Routh Hurwitz criterion, Frequency response analysis, Correlation between time and frequency domain specifications, Resonant peak, Resonant frequency, Bandwidth, Cutoff frequency, Polar plots, Bode plots.	8	CO3
4	Root Locus Technique and Stability in Frequency Domain The root locus concepts, Construction of root loci, Nyquist stability criterion, Relativestability, Gain margin, Phase margin, Constant M and N circles.	8	CO4
5	Introduction to Design and State variable technique Design through compensation Techniques; Realization of Lag, Lead, And Lag-Lead compensation; Design of closed loop control system using root locus and bode plot compensation. Introduction to State variable analysis, State space representation, Stateequations, State transfer matrices, Controllability and observability.	8	CO5
Refe	rences Books:		
B. C.	Kuo, "Automatic Control system", Wiley, 9th Edition, 2014.		
1. J. N	Agrath & M. Gopal, "Control system Engineering", New Age International, 4th Edition, 2015.		
K. Og	gata, "Modern Control Engg.", PHI, 4th Edition, 2002. Bhattacharva, "Control system Engg." Pearson Education, 2nd Edition, 2008		
S. R. S. Ha	san Saeed, "Automatic control system", Kataria and sons, New Delhi, 8th Edition, 2016		

	1															
РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
со																
CO1	3	2		1									2	1	2	3
CO2	3	2		1									3	2	3	3
CO3	3	2										1	3	1	2	3
CO4	1	3		2								1		2		3
CO5	2	2	3									1	1		2	3

ELECTRICAL ENGINEERING

			Effe	ctive from Sess	ion		
Course Code	EE 303	Title of The Course	POWER ELECTRONICS	L	Т	Р	С
Pre-Requisite	None	Co-Requisite	None	3	1	0	4

Objectives

	Course Outcomes
CO1	Understand and analyze the concept, design, technique, advancement and application of Bipolar junction transistor, Power Metal oxide semiconductor field effect transistor, Insulated gate bipolar junction transistor, operation of Silicon controlled rectifier (SCR), Firing circuits of Thyristor, Turn on methods of a Thyristor and Thyristor turn-off process.
CO2	Understand and analyze the concept, design, technique, advancement and application of Protection of Thyristor, Series and parallel operation of SCR, Gate turn off (GTO) thyristor. Understand and analyze the concept and knowledge advancement in Gate characteristic of an SCR, Dynamic characteristics of SCR, Two transistor analogy, Rating of an SCR
CO3	Understand and analyze the concept, design, technique, advancement and application of single phase half wave and full wave controlled rectifiers with different types of load, Effect of source impedance on the performance of full wave converter, Dual converter, three phase converters and cyclo-converters
CO4	Understand and analyze the concept, design, technique, advancement and application of Single phase bridge inverters (half and full wave), Pulse width modulation (PWM) inverters, Series inverter, Parallel inverter, Mc-Murray half bridge inverter, Three phase inverter.
CO5	Understand and analyze the concept, design, technique, advancement and application of choppers, chopper circuits, Multi quadrant choppers, Commutation of choppers, Switched mode power supplies.

No	Contant	Contact	Mapped
110.		Hrs.	CO
	Power Transistors I Classification of power transistors, Bipolar junction transistor (BJT), Power Metal oxide semiconductor field	8	CO1
1	effect transistor (MOSFET), Insulated gate bipolar junction transistor (IGBT), Basic principle of operation of Silicon controlled	L	
	rectifier (SCR), Voltage vs Current characteristics of SCR, Firing circuits of Thyristor, Turn on methods of a Thyristor, Thyristor		
	turn-off process.		
	Power Transistors II :Protection of Thyristor, Gate characteristic of an SCR, Dynamic characteristics of SCR, Series and parallel	8	CO2
2	operation of SCR, Two transistor analogy, Rating of an SCR, Gate turn off (GTO) thyristor.		
	Controlled Rectifiers Analysis of single phase half wave and full wave controlled rectifiers with different types of load, Effect of	8	CO3
3	source impedance on the performance of full wave converter, Dual converter, Introduction to three phase converters and cyclo-		
	converters.		
	Classification of inverters, Single phase bridge inverters (half and full wave), Pulse width modulation (PWM) inverters, Series	8	CO4
4	inverter, Parallel inverter, Mc-Murray half bridge inverter, Three phase inverter.		
5	Choppers :Principle of choppers, Analysis of chopper circuits, Multi quadrant choppers, Commutation of choppers, Switched	8	CO5
	mode power supplies.		
Ref	erences Books:		
1.M	I. H. Rashid, "Power Electronics: Devices, Circuits and applications", Pearson, 4th edition, 2014.		
2. J	. M. Jacob, "Power Electronics: Principles and applications", Thomson Press (India) Ltd; 1st edition, 2006.		
3. \	Vedam Subramanium, "Power Electronics: Devices, Converters, Application", New Age Int. (P) Ltd., 2nd edition, 2012.		
4. N	Ved Mohan, "Power Electronics: Converters, Applications and Design", Wiley, 3rd edition, 2002.		

PO/ CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	1	3	3	2	2	2	1	1	2	3	2	3	3
CO2	3	3	2	1	3	3	2	2	2	1	1	2	3	2	2	2
CO3	3	3	2	1	3	3	2	2	2	1	1	2	2	2	2	3
CO4	3	3	2	1	3	3	2	2	2	1	1	2	2	3	2	2
CO5	3	3	2	1	3	3	2	2	2	1	1	2	3	3	2	3

ELECTRICAL ENGINEERING 3rd Year

				Effective Session	from	2	017-18	
Course Code	EE305	Title of The Course	COURSE: DIGITAL CIRCUITS AND SYSTEMS		L	Т	Р	С
Pre-Requisite	NONE	Co-Requisite	NONE		3	1	0	4

	 To understand number representation and conversion between different representation in digital electronic circuits. Became familiar with the digital signal, positive and negative logic, Boolean algebra, logic gates, logical variables, the truth table, number systems, codes, and their conversion from one to others. To analyze logic processes and implement logical operations using combinational logic circuits.
o bjecu ve	 To understand competence in analysis of synchronous and asynchronous sequential circuits. To understand characteristics of memory and their classification. To understand concept of Programmable Devices, PLA, PAL, PLD and FPGA and implement digital system. To impart how to design Digital Circuits.

	Course Outcomes
CO1	Convert different type of codes and number systems which are used in digital communication and computer systems. Develop a digital logic and apply it to solve real life problems.
CO2	Employ the codes and number systems converting circuits and Compare different types of logic families which are the basic unit of different types of logic gates in the domain of economy, performance and efficiency.
CO3	Analyze, design and implement combinational and sequential logic circuits.
CO4	Analyze different types of digital electronic circuit using various mapping and logical tools and know the techniques to prepare the most simplified circuit using various mapping and mathematical methods.
CO5	Design different types of with and without memory element digital electronic circuits for particular operation, within the realm of economic, performance, efficiency, user friendly and environmental constraints.
CO6	Classify different semiconductor memories. Assess the nomenclature and technology in the area of memory devices and apply the memory devices in different types of digital circuits for real world application.

No	Content	Contact	Mapped
110.	Concin	Hrs.	CO
	Introduction	8	CO1
1	Digital systems, Logic Circuits, Review of positional number system, Fixed and floating		
	Numbers, Binary coded decimal (BCD) codes, Gray Codes, Parity Check Codes. Standard		
	representation of logic functions: Sum of Products (SOP) and Product of Sums (POS) forms,		
	Simplification of switching functions: Karnaugh-Map (K-Map).		
	•		
	Logic Families	8	CO2
2	Introduction to different logic families; Transistor Transistor Logic (TTL) and Complimentary -		
	Metal oxide semiconductor (C-MOS) inverter: circuit description and operation; Structure and		
	operations of TTL and C-MOS gates; Electrical characteristics of logic gates: Logic levels,		
	noise margins, propagation delay and power consumption.		
	Combinational logic systems, Modules and their applications	8	CO3
3	Basic logic operation and logic gates, Decoder, Encoder, Multiplexer, De-multiplexer, Parity		
	circuits and comparators, Arithmetic modules: Adder and Subtractor		
	Sequential logic systems, Modules and their applications	8	CO4
4	Sequential Circuits: Latches and Flip-flops, Transition, Excitation table, Excitation maps and		
	equations, Counters, Shift register, 555 timers, Multivibrator.		

5					11		1 •									0	CO5
5	vlemor	y and	Prog	ramn	nable	logic	device	es								0	COS
]	Read c	only r	nemoi	ry, Re	ead/wi	rite n	nemor	y: Sta	atic F	Randon	n Acce	ess Me	emory	(SRAI	M) and	1	
]	Dynamic Random Access Memory (DRAM), Programmable Logic Arrays (PLAs) and																
	Program	nmabl	e Arr	ay Lo	ogic (PALs) and	their	appli	cation,	Seque	ential 1	Program	nmable	e Logic	2	
	Devices	s (PLE	Ds) and	d their	appli	cation	, Intro	oductio	on to I	Field P	rogram	ming (Gate A	rray.	U		
Refer	ences Bo	ooks:	,		11		,				<u> </u>	<u> </u>		· ·			
1. R.	P. Jain,	"Mod	lern D	igital	Electr	onics'	', TM	H, 4th	Editio	n, 201	0.						
2. M	orris M	ano, "	Digita	l Desi	ign", I	PHI, 3	rd Edit	tion, 2	014.								
3. R.	3 R. L. Tocci "Digital Systems" PHI 4th Edition 2016																
4 M	alvino	and Le	ach "	Digit	$\frac{1}{2}$, $\frac{1}{2}$	ciples	anda	nnlige	tions'	, TMF		dition	2014				
4. IVI				Digita	<u>ai pim</u>	<u>cipics</u>	anu a	ipplica		, 1 WII			2014.		0.1		
5. J.	M. Yar	broug	h, "Dı	gıtal L	_ogic-	Appli	cation	and L	Design	.", PWS	S Publi	shing,	5th Edit	tion, 20	06		
6. B.	S. Nai,	, " Dig	gital E	lectroi	nics ai	nd Log	gic De	sign"	, PHI,	7th Edi	tion, 20	012					
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	1
CO	_										-	_					
C01	3	2	2	2		1	2	1		1		1	2	2		2	-
CO2	2	3		2	2	1	3		1	1	1	1	2	3	2	2	-
CO3	3	3	3	2	2						1	1	3	3	3	3	1
CO4	2	3	3	2		2	2		1	2	3		2	2	3	3	1
CO5	1	2	2	2	2	2		3	1		1		2	2	2	3	1

ELECTRICAL ENGINEERING 3rd Year

					Effective Session	from	2	017-18	
Course C	Code	EE-307 / EEE- 307	Title of The Course	POWER SYSTEM – I		L	T	Р	С
Pre-Req	uisite	NONE	Co-Requisite	NONE		3	1	0	4
Objectiv	e	 To To To To To To 	get knowledge of Power 3 get knowledge of inducta attain knowledge of Coro study about Mechanical I have the knowledge of El	System Components and Transmission nce and capacitance of Over-Head Tra ona and Overhead line Insulators Design of transmission line and Insulate lectrical Design of Transmission Line a	Lines nsmission Lin ed cables nd Neutral gro	es ounding			
		Course Out	comes						
CO1	L I	Understand 1	the Power System Compo	onents and Transmission Lines					
CO2	2	Analyse the	inductance and capacitan	ce of Over-Head Transmission Lines					
CO3	3	Understand t	the phenomenon of Coror	na and Overhead line Insulators					
CO4 Having knowledge of Mechanical Design of transmission line and Insulated cables									
CO5	5	Design Elect	trical Transmission Line a	and Neutral grounding					
No. Cont	tent							Contact N	Mapped

1 (0.		Hrs.	CO
	Power System Components and Transmission Lines	8	CO1
1	Single line Diagram of Power system, Brief description of Power System Elements:		
	Synchronous machine, transformer, transmission line, busbar, circuit breaker and isolator.		
	Different kinds of supply system and their comparison, Choice of transmission voltage.		
	Transmission Line Configurations, Types of conductors, Resistance of line, Skin effect,		
	Kelvin's law, Proximity effect.		
	Head Transmission Lines	8	CO2
2	Calculation of inductance and capacitance of single phase, three phase, single circuit and double		
	circuit transmission lines; Representation and performance of short, medium and long		
	transmission lines; Ferranti effect; Surge impedance loading.		
	Corona and Overhead line Insulators	8	CO3
3	Phenomenon of corona, Corona formation, Calculation of potential gradient, Corona loss,		
	Factors affecting corona, Methods of reducing corona and interference, Electrostatic and		
	electromagnetic interference with communication lines. Types of insulators and their		
	applications, Potential distribution over a string of insulators, Methods of equalizing the		
	potential, String efficiency.		
	Mechanical Design of transmission line and Insulated cables	8	CO4
4	Centenary curve, Calculation of sag & tension, Effects of wind and ice loading, Sag template.		
	Type of cables and their construction, Dielectric stress, Grading of cables, Insulation resistance,		
	Capacitance of single phase and three phase cables, Dielectric loss, Heating of cables.		
5	Electrical Design of Transmission Line and Neutral grounding	8	CO5
	Design consideration of Extra High Voltage (EHV) transmission lines, Choice of voltage,		
	Number of circuits, Conductor configuration, Insulation design and selection of ground wires.		
	Necessity of neutral grounding, Various methods of neutral grounding, Earthing		
	transformer, Grounding practices.		
п.е.			
1 V	rences Books: 7 D. Stavanson "Element of Dowar System Analysis" McGrayy Hill Att rayised edition 1082		
$\frac{1}{2}$	L. Wadhwa "Electrical Power Systems" New ago international Ltd. 6. Edition 2010		
$\frac{2.0}{2.1}$	D. Singh "A dyange Dower System Analysis & Dynamics" New Academic Science 6th adition	012	
5. L	r. Singh, Auvance rower System Analysis & Dynamics, New Academic Science, 0 ^{ee} edition, 2 abfag Uusaain, "Device System" CDS Dublishers and Distributors, 5, Edition, 2010	2012.	
4. A	smaq nussain, rower System, CBS rubisners and Distributors, 5th Edition, 2010.		

РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	2	1	1								1	2	1	2	3
CO2	3	3		1								1	2	3	2	3
CO3	3	3	1	2								1	2	3	2	3
CO4	3	2	3				3		3	2	2	1	2	3	2	3
CO5	3	1	3	2	2	2			3	2	2	2	2	3	2	3

ELECTRICAL ENGINEERING

				Effective	from			
				Session				
Course Code	EE311	Title of The Course	POWER SYSTEM-II		L	Т	Р	С
Pre-Requisite	NONE	Co-Requisite	NONE		3	1	0	4

	Representing elements of a power system including generators, transmission lines, and transformers.
	• Understand the functioning of a synchronous machine and represent it with simple models.
	• Perform Fault analysis for a balanced three-phase power system .
Objectives	• Analyze multi-node power systems using an admittance matrix or impedance matrix representation of the power system factor the admittance matrix to obtain a solution of the network voltages.
	• Understand the formulation of the power flow problem, and have the ability to cast any given system in this framework.
	• Solve power flow problems by the application of Newton method & Gauss seidel.
	Perform Steady-state analysis for a balanced three-phase power system, Reflection and
	Transmission of travelling waves under different line loadings
	Protection of equipments and line against travelling waves

	Course Outcomes
CO1	Representation of Elements in Electric Power System in Per-Unit system and Analysis of Symmetrical
	faults.
CO2	Analysis of Unsymmetrical faults.
CO3	Understanding the formulation of the power flow problem and to cast any given system in this framework
CO4	Understanding the concept of steady state and transient stability.
CO5	Need of Protection of equipments and line against travelling waves.

S No	Contant	Contact	Mapped
S.110.		Hrs.	СО
	Representation of Power System Components: Synchronous machines, Transformers, Transmission	8	CO1
1	lines, Single line diagram, Impedance and reactance diagram, Per unit System, Transient in R-L	l	
	series circuit. Symmetrical fault analysis: Calculation of 3-phase short circuit current and reactance	l	
	of synchronous machine, internal voltage of loaded machines under transient conditions		
	Symmetrical components: Symmetrical Components of unbalanced phasors, power in terms of	8	CO2
2	symmetrical components, sequence impedances and sequence networks. Unsymmetrical faults:	l	
	Analysis of single line to ground fault, line-to-line fault and Double Line to ground fault on an	l	
	unloaded generators and power system network with and without fault impedance. Formation of	l	
	Zbus using singular transformation and algorithm		
	Load Flows: Introduction, bus classifications, nodal admittance matrix, development of load flow	8	CO3
3	equations, load flow solution using Gauss Siedel and Newton-Raphson method, approximation to N-	l	
	R method, line flow equations and fast decoupled method.		
	Power System Stability: Stability, Stability limit, Steady state stability study, derivation of Swing	8	CO4
4	equation, transient stability studies by equal area criterion and step-by-step method, Factors affecting	l	
	steady state & transient stability and methods of improvement.		
5	Traveling Waves: Wave equation for uniform transmission lines, velocity of propagation, surge	8	CO5
	impedance, reflection and transmission of traveling waves under different line loadings, Protection	l	
	of equipments and line against traveling waves.	1	
Refer	ences Books:		
1.W.I	D. Stevenson, Jr. " Elements of Power System Analysis", Mc Graw Hill 4th edition		
2. C.I	. Wadhwa, "Electrical Power System", New Age International, 2009		
3. Ch	akraborthy, Soni,Gupta & Bhatnagar, "Power System Engineering", Dhanpat Rai & Co. ,2008		
4. T.F	X Nagsarkar & M.S. Sukhija, "Power System Analysis" Oxford University Press, 2007.		
5. Ha	di Sadat; "Power System Analysis", Tata McGraw Hill. 2nd Edition, 2002.		
6.D.D	Das, "Electrical Power Systems" New Age International, 2006.		
7. P.S	R. Murthy "Power System Analysis" B.S. Publications, 2007.		

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2								2	2	3	3	2	3
CO2	3	3	2	2	2								3	3	2	2
CO3	3	3	1	2	2							2	3	3	2	3
CO4	3	2	3	2	3					2	2		3	2	1	3
CO5	3	3	3			2	1				2	2	3	2	1	3

ELECTRICAL ENGINEERING 3rd Yer/5th Semester

				Effective fr	om Sessi	on 17	7-18	
Course Code	EE-313/ EEE-313	Title of The Course	Microprocessor and Peripheral Devices		L	Т	Р	С
Pre-Requisite	NONE	Co-Requisite	NONE		3	1	0	4

	•	Knowledge of I/O devices and memories
	•	To get knowledge of architecture of 8085 and 8086
Objectives	•	To attain knowledge of different instruction set of 8085 and 8086
	•	To study about different types of Programmable Peripheral Interface
	•	To have the knowledge of analog to digital and digital to analog converter chips

	Course Outcomes
CO1	Understand the basics of microprocessor
CO2	Understand the architecture of 8085 and 8086
CO3	Knowledge of instruction set of 8085 and 8086
CO4	Knowledge of programmable peripheral interface
CO5	Knowledge of analog to digital and digital to analog converter

No.	Content	Contact	Mapped
1 101		Hrs.	CO
	Introduction of Microcomputer System:	8	CO1
1	General definition of minicomputer, microprocessor, CPU (central processing unit), I/O (Input -output) devices, clock, memory,		
	bus architecture, tri-state logic, address bus, data bus and control bus. Semiconductor Memories: Development of		
	semiconductor memory, internal structure and decoding, memory read and write timing diagrams, ROM (Read-only memory),		
	RAM (Random-access memory).		
	Architecture of 8-bit Microprocessor: Introduction to 8085 and 8086 microprocessor, Pin description and their internal	8	CO2
2	architecture. Operation and Control of Microprocessor: Timing and control unit, memory read/write machine cycles, Input-		
	output read/write machine cycles, interrupt acknowledge machine cycle.		
	Instruction Set:	8	CO3
3	Addressing modes- Data transfer, arithmetic, logical, branch, stack and machine control groups of instruction set, unspecified		
	flags and instructions, assembly language programming, assembler directives, subroutines.		
	Interfacing: Interfacing of memory chips, Interfacing of Input-output devices, Input-output addressing, Input-output memory	8	CO4
4	mapped schemes, 8255 Programmable Peripheral Interface, 8257 Direct memory access Controller, 8259 Interrupt priority		
	Control, 8253/8254 Programmable timer/counter with modes of operation. Interrupts: Interrupt structure of 8085		
	microprocessor.		
5	Programmable Peripheral Interface:	8	CO5
	Intel 8255 pin configuration, internal structure of a port bit, modes of operation, bit SET/RESET feature, analog to digital		
	converter and digital-to-analog converter chips and their interfacing. Programmable Interval Timer: Intel 8253, pin		
	configuration, internal block diagram of counter and modes of operation, counter read methods.		
Refe	rences Books:		
1.B.F	am, "Fundamentals of Microprocessor and Microcomputer", Dhanpat Rai Publication, 4th Edition.2008		
2. M.	Rafiquzzaman, "Microprocessors and Applications", John Wiley & Sons ,2008		
3. Ha	ll D.V.,"Microprocessor and Interfacing-Programming and Hardware", 2nd Ed., Tata McGraw-Hill Publishing Company Limited	l, reprinte	ed 2008

4. Gaonkar R.S., "Microprocessor Architecture, Programming and Applications", 6th Ed., Penram International, 2013.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3			1	1	1	1					3	3	3	2	3
CO2	3	2	2	2	2	1						3	3	3	2	3
CO3	3	2	2	2	2	1						3	3	2	2	2
CO4	3	2	2	2	2	1	1					3	2	2	2	2
CO5	3	1	1	1	1	1	1					3	3	2	2	3

ELECTRICAL ENGINEERING 3rd Year

			E	Effective fi	rom Ses	sion 20	017-18	
Course Code	EE323	Title of The Course	PROCESS INSTRUMENTATION		L	Т	Р	С
Pre-Requisite	NONE	Co-Requisite	NONE		3	1	0	4

Objective	•	Knowledge of different process ant its characteristics. Understanding of different control loops used in process. Study and analysis of feedback control system and its applications.
	•	Applications and design of multi-loop control system.
	•	Concepts and design of multivariable control systems.

	Course Outcomes
CO1	Know about different process ant its characteristics.
CO2	Understand different control loops used in process
CO3	Use feedback control system.
CO4	Design of multi-loop control system.
CO5	Design of multivariable control systems.

No	Conte	nt														Contact	Mapped
140.	D. Content													Hrs.	CO		
	Process characteristics: Incentives for process control; Process Variables types and selection criteria; Process degree of freedom; The period of Oscillation and Damping; Characteristics of physical System; Resistance												8	CO1			
1	degree of freedom; The period of Oscillation and Damping; Characteristics of physical System: Resistance capacitance and Combination of both; Elements of Process Dynamics; Types of processes; Dead time, single a												esistance,	,			
	Capac	citan	ice and	Combin	ation of	both; E	lements	s of Pro	cess Dy	mamics	; Types	of proces	sses: Dea	d time, s	ingle and	L	
	multi-	cap	acity, s	elf-regu	lating a	nd nor	self-r	egulatin	g, inter	racting	and not	n interae	cting, lii	near / n	on-linear;	;	
	Selection of control action.																
	Analysis of Control Loop: Steady state gain; Process gain; Valve gain; Process time constant; Variable ti												able time	8	CO2		
2	Constant; Transmitter gain; Linearizing an equal percentage valve; Variable pressure drop; Analysis of F												of Flow	7			
	Control, Pressure Control, Liquid level Control, Temperature control; Single Line Process Controller: feature											features.	,				
	facepl	late,	functio	ons; Mu	lti Line	Proces	s Contr	oller: fo	eatures,	facepla	ate, func	ctions; C	ompariso	on of Si	ngle Line	;	
	Process Controller and Multi Line Process Controller. Scaling: Types of scaling, Examples of scaling.																
	Feedback Control: Basic principles, Elements of the feedback Loop, Block Diagram, Control Performance											formance	8	CO3			
3	Measu	ures	for Cor	nmon Iı	nput Cha	nges, S	election	n of Var	iables f	or Cont	rol Appi	oach to l	Process (Control.	Factors in	L	
	Contro	ollei	r Tunin	ig; Dete	ermining	Tunin	g Cons	stants f	or Goo	d Con	trol Perf	formance	; Correl	ations for	or tuning	5	
	Const	ants	; Fine	Tuning	of the	controll	er tuni	ng Con	stants;	The pe	rforman	ce of fe	edback S	Systems;	Practical	l	
	Application of Feedback Control: Equipment Specification, Input Processing, Output Processing.																
	Multi	i-Lo	op Sys	tem: C	ascade	control;	Feed	forward	contro	l; Feed	lback-fee	ed forwa	rd contr	ol; Ratio	o control	;8	CO4
4	Select	tive	Control	; Split 1	range co	ntrol: E	Basic pr	inciples	, Desig	n Criter	ria, Perfo	ormance,	Control	ler Algor	rithm and	l	
	Tunin	g,]	Impleme	entation	issues,	Exam	ples an	d any	special	featur	es of th	ne indiv	idual lo	op and	industrial	l	
	applic	catio	ns.														
5	Multi	var	iable C	ontrol:	Concept	of Mu	ltivaria	ble Cor	ntrol, Ir	teractio	ons and	its effec	ts; Mode	eling and	l transfei	:8	CO5
	functi	ons;	Influe	nce of i	interacti	on on t	he poss	sibility	of feed	back co	ontrol; I	mportant	effects	on multi	variable	•	
	system	n be	havior;	Relative	e Gain A	Array; E	ffect of	interac	tion on	stabilit	y and mu	ılti-loop	control s	system; N	/lulti-loop		
	contro	ol pe	erformar	nce throu	ugh loop	paring	; Tuning	g; Enhar	ncement	t throug	h decouj	oling; Sir	igle loop	enhance	ments.		
Refe	rences	s Bo	oks:														
1. Do	onald F	Р . Ес	ckman, ʻ	'Autom	atic Proc	ess Cor	ntrol", V	Viley In	dia Edit	tion, W	iley India	a Pvt. Lto	1,2009				
2. F.	G. Shi	insk	ey, "Pro	cess coi	ntrol Sys	tems",	McGrav	w Hill, 4	th Editi	ion, 199	96.						
3.P. V	W. Mu	ırrill	, "Fund	amental	s of Pro	ess Co	ntrol Th	eory", I	nternati	onal Sc	ciety of	Automat	ion, 3rd	Edition, 2	2012.		
4. G.	D. Co	nsic	line, "Pr	ocess Ir	nstrumer	tation a	nd cont	rol Han	dbook"	, McGr	aw Hill,	5th Editi	on,1993	1			
PO	/ PC)1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
<u>/CO</u>													-	-			_
COI	3		1	1	1	1	3	1				1	3	2	2	2	2
CO2	2 3		2	2	1	3	2	1				1	2	2	3	2	3
CO3	3 3		2	2	1	3	3	3				1	3	2	3	2	3
CO4	3		2	3	2	3	3	3				1	3	2	3	2	3
CO5	5 3		3	3	3	3	3	2				1	3	2	3	2	3

ELECTRICAL ENGINEERING

				Effective Session	from		2017-18	
Course Code	EE325	Title of The Course	CONVENTIONAL & CAD OF ELECTRICAL MACHINES		L	Т	Р	С
Pre-Requisite	None	Co-Requisite	None		3	1	0	4

	 To develop knowledge on principles of design of static and rotating machines. To understand the fundamental concepts of design process, designing of main dimensions & cooling systems of transformers and rotating machine.
Objective	• To provide advanced knowledge and understanding about the construction and design of the electrical machines.
	• To provide the basis and the methodologies to correct a design of the electrical machines (transformers, rotating (AC machines and DC machines).
	• To understand the design optimization of the electrical machine for industrial, automotive and aerospace applications.

	Course Outcomes
CO1	Student understands the basic concept of design, limitations faced in the designing process, and
COA	classification & importance of instanting materials.
CO2	Student is able to understand the design concepts of transformers and know about how to design the core,
	yoke & windings.
CO3	Upon completing the course, student is able to understand the factors affecting the size of rotating machines
	and design of core & armature in DC machines along with selection of frame size.
CO4	Student is able to understand the rotor design of Induction motor and field system design of Synchronous
	machines & DC machines along with problem solving techniques related to design.
CO5	Student understands the importance of Computer aided design and different approaches based on their
	applications along with the concept of optimization.

No.	Content	Contact	Mapped
	Rocia Considerations	піs. 8	CO1
1	Basic concept of design Limitation in design Standardization Modern trends in design and	0	COI
1	manufacturing techniques, Classification of insulating materials, Calculation of total magnetomotive		
	force (m m f) and magnetizing current		
	Transformer Design	8	CO2
2	Output equation; Design of core, yoke and windings; Overall dimensions; Computation of no load		
	current to voltage regulation; Efficiency and cooling system designs		
	Design of rotating machines I	8	CO3
3	Output equations of rotating machines, Specific electric and magnetic loadings, Factors affecting size		
	of rotating machines, Separation of main dimensions, Selection of frame size, core and armature		
	design of dc machines.		
	Design of rotating machines II	8	CO4
4	Core and armature design of 3-phase ac machines, Rotor design of three phase induction motors,		
	Design of field system of Direct Current (DC) machine and synchronous machines,		
	Estimation of performance from design data.		
5	Computer Aided Design:	8	CO5
	Philosophy of computer aided design, advantages and limitations; Computer aided design approaches		
	analysis; Synthesis and hybrid methods; Concept of optimization and its general procedure; Flow		
	charts and 'c' based computer programs for the design of transformer, DC machine, three phase		
	induction and synchronous machines.		
Refe	rences Books:		
1. A.	K. Sawhney, "A Course in Electrical Machine Design", Dhanpat Rai & Sons, 6th Edition, 2006.		
2. K.	G. Upadhyay, "Conventional and Computer Aided Design of Electrical Machines", Galgotia Publication	s, 1st ed	ition,
2004			
3. M.	.G. Say, "The Performance and Design of AC Machines", Pitman & Sons, 2nd Edition 1952		
4. A.	E. Clayton and N.N. Hancock, "The Performance and Design of D.C. Machines", Pitman & Sons.		
5. S.I	K. Sen, "Principle of Electrical Machine Design with Computer Programming", Oxford and IBM Public	ations	

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	3	2									3	3	3	2	2
CO2	3	3	2	2	2						2		3	3	2	2
CO3	3	3	1	2	2						2	2				
CO4	3	2	3	2	3					2	2					
CO5	2	2	2			2	2									

ELECTRICAL ENGINEERING 3rd Year/6th Semester

				Effective Session	e from		2017-18	
Course Code	EE333	Title of The Course	ADVANCED CONTROL SYSTE	MS	Ĺ	Т	Р	C
Pre- Requisite	Control System EE-301	Co-Requisite	NONE		3	1	0	4

	 To learn the concept of state space analysis of continuous system. To get the knowledge of state equations, controllability and observability
Objective	• To design the state observer and controller using pole-placement approach
	• To gain information on non-linear control system
	• To evaluate the stability of the system using Lyapunov's stability analysis

	Course Outcomes
CO1	Students will be able to understand different state model of a system, and have the knowledge to find its solution.
CO2	Students will be industry ready by analysis of controllability and observability of the dissimilar system.
CO3	Students will be industry ready by designing the State observer and controller using pole- placement approach
CO4	Students will be able to understand nonlinear system models, and analyse its stability.
CO5	Students will be able to analyse system's stability using Lyapunov stability analysis.

No.	Content	Contact Hrs.	Mapped CO
1	State Space Analysis of Continuous System Introduction, Concept of state, Sate variable description, State space representation, statevariable representation of continuous system, Conversion of state variable models to transfer function and vice-versa.	8	CO1
2	State Equations, Controllability and Observability Characteristic equation, state transition matrix, Solution of state equations, Concept of controllability and Observability, Controllable, observable and diagonal canonical form.	8	CO2
3	Pole-Placement Design and State observer Concept of pole-placement, Stability improvement by state Feedback, State regulatordesign, design of state observers and controller.	8	CO3
4	Non-linear Control System Types and characteristics of non-linearity, phenomena related to non-linear systems. Phase plane analysis, types of phase portraits, singular points, construction of phase portraits, system analysis by phase-plane method, describing function and its application system analysis.	8	CO4
5	Lyapunov's Stability analysis Concept of Lyapunov's stability, Stability of equilibrium state, asymptotic stability, Lyapunov's stability theorems for continuous systems, methods of generating Lyapunov'sfunction for continuous system, Stability analysis of non-linear system.	8	CO5
Refe	rences Books:		
M.Go	opal, "Digital Control and State variable Methods", Tata Mc Graw Hill, 4th Edition, 2015		
Ajit I 5th E	K.Madal, "Introduction to Control Engineering: Modelling, Analysis and Design" New Age Internation dition, 2013.	onal,	
K. O	gata, "Modern Control Engg.", PHI, 4th Edition, 2002.		
S. K.	Bhattacharya, "Control system Engg.", Pearson Education, 2nd Edition, 2008.		
B.N.	Sarkar "Advanced control system" PHI Learning Pvt. Ltd., 2013.		

	1															
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
со																
CO1	3	2		1										2	2	2
CO2	3	2													3	2
CO3	3	2		2								1	2	2		3
CO4	1	2		3								1			2	3
CO5	2	2	3		2							1		2		3

ELECTRICAL ENGINEERING 3rd Year

												Effecti	ve from	I	2017-2	18
Cour	se Code	EE33	5 Ti	tle of T	he Cour	se	INDUS	STRL	AL AI	TOM	ATION	5033101		Т	Г С Р	С
Pre-	Requisit	e NONI	F Co	n-Reau	lisite	50		J I N I					3	1	0	4
iic	nequisit			o nequ	isite											l
		•	To imp	prove qu	ality, and	redu	ce huma	an invo	lvemen	t and pos	ssibility o	of human	error.			
Obje	ctive	•	To rais	e the lev	el of safe	ty fo	r person	nal.								
		•	To red	uce the v	work piec	e dan	nage ca	used by	/ manua	ıl handlir	ıg.					
	<u>CO1</u>	Course (Jutcom	es d analy	To the	~ ~ ~ ~ ~	nt dag	ion to	ahniau	a adva		and and	liestion	of Ar	tomotic	Control
	COI	Proporti and Inve	onal- In erse Res	tegral-d	ze the c erivative ystems	(PID) Contr	ol and	their Tu	uning, Fe	ed-forwa	and app and and R	atio Cor	ntrol, Tir	ne Dela	y Systems
(CO2	Unders Single	stand an loop ar	d analyz nd Multi	the cor loop cor	cept, ntroll	, design ers, Hy	, techn draulic	ique, ac Contro	lvanceme ol Systen	ent and a ns, Indus	pplication trial Hyd	n of Dif Iraulic C	ferent ty Circuit, H	pes of a Pneuma	controllers, tic Control
		System	is													
	CO3	Unders	stand an	d analyz	the con	cept,	design,	techni	que, ad	vanceme	ent and ap	plication	of Seq	uential a	nd Prog	rammable
		Control	lers, Ai	rchitectu	C based	ional	l blocks	, Prog	rammin	ig of PL	C: Relay	logic at	nd Ladd	er logic m boot	, Comn	nunication
		sensors		1 LC, 1 I	L Dascu	conu	ior or p	locesse	.s- Con	iputer co		iquiu icv	ci syste	m, neat	CACHAIIg	zer, Smart
	CO4	Unders	,. stand an	d analyz	ze the co	icent	. design	. techr	ique, a	dvancem	ent and a	applicatio	on of Fu	nctional	require	ments and
		Compo Unit Co	onents.	General ons. Hur	features, nan Macł	Fund ine in	ctions a nterface	ind Ap	plicatio	ons, Bene	efits. Cor	figuratio	ns of S	CADA,	Remote	e Terminal
(CO5	Unders	tand an	d analyz	ze the con	cept,	, design	, techn	ique, a	dvancem	ent and a	applicatio	n of Di	fferent a	rchitect	ures, Local
		control	unit, (Operator	Interfac	e, En	ngineeri	ng inte	erface,	Study of	any on	e DCS a	vailable	in mar	ket, Fa	ctors to be
		conside	ered in s	selecting	DCS											
															Conta	actManned
No.	Content														Hrs.	CO
	Industria	l Autom	ation S	ystems:											8	CO1
1	Introducti	on, Archi	itecture,	, Introdu	ction to A	uton	natic Co	ontrol,	Proport	ional- Int	tegral-dei	rivative (l	PID)Co	ontrol an	d	
1	their Tuni	ng, Feed-	-forware	d and Ra	atio Contr	ol, Ti	ime Del	ay Sys	tems an	d Inverse	e Respon	se Systen	ns			
	Controlle	rs:													8	CO2
2	Different Hvdraulic	types of c Circuit.	controll Pneuma	ers, Sing atic Cont	gle loop at trol Syste	nd M ns	ulti loop	o contro	ollers, I	Hydraulic	c Control	Systems,	, Industr	ial		
	Program	mable log	gic Con	trollers	(PLC):										8	CO3
3	Sequentia	l and Pro	gramma	able con	trollers, A	rchit	tecture,	Functio	onal blo	cks, Prog	gramming	g of PLC:	: Relay l	ogic and	1	
-	Ladder log	gic, Com	munica	tion Net	works for	PLC	, PLC b	ased co	ontrol o	f process	ses- Com	puter con	trol of l	iquid		
-	level syste	em, heat e	exchang	ger; Sma	rt sensors	•										
	Superviso	ory Cont	rol and	Data A	cquisitio	n (SC	CADA):	:							8	CO4
4	Introducti	on, Funct	tional re	equireme	ents and C	omp	onents.	Genera	al featu	res, Func	tions and	Applicat	tions, Be	enefits.		
_	Configura	tions of S	SCADA	A, Remot	e Termin	al Un	nit Conn	ections	s. Huma	in Machi	ne interfa	ace.				
5	Distribut	ed Contr	ol Syst	em (DC	S):				T . C						8	CO5
-	Evolution	, Differer	nt archit	fectures,	Local co	idoro	unit, Op	perator	Interfac	ce, Engin	eering in	terface, S	study of	any one		
Rofor	DCS avail		lai ket, i			luere			DCS							
1 Sel	horg DE	Edgar '	T F and	1 Mellic	hamp TF	Edo	ar FID	ovle II	I "Proc	ess dyna	mics and	control "	Wilev	3 rd editi	on 2010)
$\frac{1.50}{2}$ Sm	hith CA	and Corri	inio A	B "Prin	ciples and	prac	tice of a	automa	tic prod	cess cont	rol " Wile	ev 3 rd ed	ition199	7	2010	
3. Joh	nson, C.E	D. "Proces	ss contr	ol instru	mentatio	tech	nology.	" Pren	tice-Ha	ll, 8 th edi	tion 2008	3				
4. Ka	lsi, H.S "I	Electronic	c Instru	mentatio	on" McGr	aw H	lill, 3 rd e	dition	2010	,						
PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO:	B PSO4
	2	3	1	2	3							2	3	2	2	3
	3	3	1	2	3							2	3	2	3	3
<u>CO2</u>	3	1	1	2	3		-	<u> </u>		+	-	2	3	2	3	3
CO4	3	1	1	2	3							2	3	2	3	3
C05	3	1	1	2	3							2	3	2	3	3

ELECTRICAL ENGINEERING 3rd Year

				Effective fr	om Ses	sion	2017-	18
Course Code	EE343	Title of The Course	RENEAWABLE ENERGY TECHNOLO	GY	L	Т	Р	С
Pre-Requisite	None	Co-Requisite	None		3	1	0	4

	1. To Give the basic knowledge of Nonconventional energy Resources sources.
Objectives	2. To make aware the students about alternate resources of energy.
	3. To provide the knowledge of decentralized energy supply to agriculture, industry, commercial and House-hold sector.

	Course Outcomes
CO1	Given an energy systems and quantifying energy students shall be able to represent this in comparison to various conventional Fossil
	fuels, identify type of system, apply vector algebra, and formulate the Remedies & alternatives for fossil fuels.
CO2	Given a Modelling of Solar Energy with sources, student shall be able to analyse theory of solar cells, solar radiation, solar
	characteristics and limitations.
CO3	For a Wind Energy Systems, student shall be able to generate its analytical response and resource assessment, analyse and evaluate the
	characteristics by Power Conversion Technologies.
CO4	For a given Hydro power, students shall be able to identify its characteristics and for Generation and Distribution, select suitable
	design of application of Mini and Micro-hydel Power with various combination for System
CO5	Given a Nuclear Energy system, student shall be able to define its fuel enrichment, different types of nuclear reactors, nuclear waste
	disposal, solve/ analyse, and modify Integrated Energy systems

No	Content	Contact	Mapped CO
140.	Conten	Hrs.	
	Introduction to energy systems and resources; Energy: sustainability & the environment, Quantifying energy & energy	8	CO1
1	arithmetic, Electricity - a primer, Fossil fuels - past, present & future, Remedies & alternatives for fossil fuels, Energy		
	efficiency and conservation, Introduction to renewable energy, availability, classification, relative merits and demerits.		
	Sun as Source of Energy, Availability of Solar Energy, Nature of Solar Energy, Solar Energy & Environment. Various	8	CO2
2	Methods of using solar energy -Photo thermal, Photovoltaic, Present & Future Scope of Solar energy. Theory of solar		
	cells, solar radiation, solar characteristics, limitations, solar thermal power plants, Solar Photovoltaic systems.		
	Basics & Power Analysis, Wind resource assessment, Power Conversion Technologies and applications, Wind Power	8	CO3
3	estimation techniques, Principles of Aerodynamics of wind turbine blade, classification of rotors, wind characteristics,		
	Performance and limitations, various aspects of wind turbine design.		
	Hydro power: Hydro power: Potential, Hydropower Generation and Distribution, Mini and Micro hydel Power	8	CO4
4	(MHP) Generation: Classification of hydel plants, Concept of micro hydel, merits, MHP plants: Components, design and		
	layout, Turbines, efficiency, Status in India.		
5	Nuclear Energy: Potential of Nuclear Energy, Nuclear Energy Technologies - Fuel enrichment, Different Types of Nuclear	8	CO5
	Reactors, Nuclear Waste Disposal and Nuclear Fusion. Hybrid energy systems - Integrated Energy systems, Diesel-PV,		
	wind-diesel power, wind conventional grid, wind-Photovoltaic system.		
Refe	rences Books:		
B.H I	Khan, "Non-Conventional Energy Resources" Tata Mc Graw-Hill Pvt. Ltd., 2nd Edition,2009.		
G.D.I	Rai, "Non-Conventional Energy Resources" Khanna Publishers, 4th Edition, 2000.		
Freris	s, L.L. "Wind and Solar Power Systems" Prentice Hall, London, 1999		

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2										2	2	2	3
CO2	3	3	2	2	2								2	2	2	2
CO3	3	3	1									2	3	2	2	3
CO4	3	3	3	2	3					2	2		2	3	2	3
CO5	3	3	3			2	1						2	2	2	2

ELECTRICAL ENGINEERING 3rd Year/6th Semester

	E	ffective fro	om	2017-18	
Course Code EE345 / Title of The EEE- 345	POWER ELECTRONICS BASE CONVERTERS DESIGN	E D	Т	Р	С
Pre-Requisite NONE Co-Requisite	NONE	3	1	0	4

Objective	 Knowledge and concept of non-isolated DC-DC converters. Analysis & Design of Isolated Converters. Knowledge and concept of AC Regulators. Analysis & Design of Self Driven Inverters. Designing of Soft switching Converters
	• Designing of Soft switching Converters

	Course Outcomes
CO1	Know about the concept of non-isolated DC-DC converters.
CO2	Analyze & Design Isolated Converters.
CO3	Know about concept of AC Regulators.
CO4	Analyze & Design Self Driven Inverters.
CO5	Design Soft switching Converters.

Na	Contort	Contact	Mapped
190.	Content	Hrs.	CO
		8	CO1
1	Limitations of Linear power supplies; Switched Mode Power Conversion; Analysis &		
	Design of Non-isolated DC-DC Converters: Buck, Boost, Buck-boost operations in		
	CCM and DCM.		
	Analysis & Design of Isolated Converters: Forward, Push-Pull, Half Bridge, Full Bridge,	8	CO2
2	Flyback, Cuk, SEPIC, High-Boost Topologies.		
	Review of AC Regulators and Cyclo-converters; Voltage control and Harmonic	8	CO3
3	minimization in inverters, square wave operation; Multilevel Inverter.		
	Analysis & Design of Self Driven Inverters, Driven Inverter, Quasi-Square Wave	8	CO4
4	Inverter; PWM, PWM with Harmonic Elimination; Matrix Converter.		
5	Soft switching Converters - Switching loss, hard switching, soft switching; Resonant	8	CO5
	Converter, basic principles of ZVS, ZCS, and ZVZCS.		
Refe	rences Books:		
1. Ne	ed Mohan, Tore M, Undelnad, William P, Robbins (3rd Edition), "Power Electronics:Conv	verters,	
Appl	ications and Design," Wiley 2002.		
2. L.	Umanand, Power Electronics - Essentials and Applications; Wiley India Pvt. Ltd		
3. P.O	C Sen.,' Modern Power Electronics ', Wheeler publishing Co, First Edition, New Delhi,19	98.	
4. M	H Rashid, Power Electronics - Circuits, Devices and Applications; PHI, New Delhi.		
5. Ph	ilip T Krein: Elements of Power Electronics; published by Oxford University Press.		

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	1	1	1	1	3	1					3		2	2	3
CO2	3	2	3	1	3	3	1					3	2	3	2	3
CO3	3	1	1	1	1	3	1					3		3	2	3
CO4	3	2	3	1	3	3	1					3	2	3		3
CO5	3	2	3	3	3	3	2					2	2	2	2	3

ELECTRICAL ENGINEERING 4th Year/7th Semester

				Effective Session	t	from 2	018-19	
Course Code	EE/EEE401	Title of The Course	Power system Protection		L	Т	Р	С
Pre- Requisite	NONE	Co-Requisite	NONE		3	1	0	4

Objective Image: To learn the basics of relays. Image: To get the knowledge of relay application. Image: To gain the knowledge of protection of Transmission line. Image: To study the different types of circuit breaker. Image: To gain the knowledge of protection of Alternator.	
--	--

	Course Outcomes
CO1	Learn the basics of relays
CO2	Acquire knowledge of relay application
CO3	Acquire knowledge of protection of Transmission line.
CO4	Knowledge the different types of circuit breaker.
CO5	Gain the knowledge of protection of Alternator

No.	Content	Contact	Mapped
	Introduction to norman system. Introduction to protective system and its elements. Function of	ers.	CO
1	Introduction to power system: Introduction to protective system and its elements, Function of	0	COI
1	protective relaying, Protective zones, Primary and backup protection, Desirable qualities of		
	protective relaying, Basic terminology.		
_	Relay Applications and characteristics: Amplitude and phase comparators, Over-current relays,	8	CO2
2	Directional relays, Distance relays, Differential relays.		
	Static relays: Comparison with electromagnetic relays, Classification and their description,		
	Overcurrent relays, Directional relays, Distance relays, Differential relays		
	Protection of Transmission line	8	CO3
3	Time graded protection; Differential and distance protection of feeders; Choice between		
	impedance,		
	reactance and MHO relays; Elementary idea about carrier current protection of lines; Protection of		
	bus; Auto reclosing, Pilot wire protection		
	Circuit Breaking: Arc phenomenon, Properties of arc, Arc extinction theories, Recovery voltage	8	CO4
4	and re-striking voltage, Current chopping, Resistance switching, Capacitance current interruption,		
	Circuit breaker ratings.		
	Circuit breakers: Need of circuit breakers; Types of circuit breakers; Operating modes; Principles		
	of construction; Details of Air Blast, Bulk Oil, Minimum Oil, SF6, Vacuum Circuit Breakers, DC		
	circuit breakers.		
5	Apparatus protection	8	CO5
	Types of faults on alternator, Stator and rotor protection, Negative sequence protection, Loss of		
	excitation and overload protection, Types of faults on transformers, Percentage differential		
	protection, Isolated neutral system, Grounded neutral system and selection of neutral grounding		
Refe	rences Books:		
1. S	. S. Rao, "Switchgear and Protection", Khanna Publishers, 13th Edition, 2008.		
2. B	. Ravindranath and M. Chander, "Power system Protection and Switchgear", Wiley Eastern		
Ltd.	, 5th Edison, 2015.		

3. B. Ram and D. N. Vishwakarma, "Power System Protection and Switchgear", Tata McGraw

Hill, 2nd Edition, 2011.

4. Y. G. Paithankar and S R Bhide, "Fundamentals of Power System Protection", Prentice Hall of India, 2004.

5. T.S.M. Rao, "Power System Protection: Static Relays with Microprocessor Applications", Tata McGraw Hill, 2nd edition, 1993.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3		1									1	2		2	3
CO2	3	2		1									2	2	2	3
CO3	3	2										1	2	2	2	3
CO4	3	2		2								1	2	2	2	3
CO5	3	1	2									1	2	2	2	3

ELECTRICAL ENGINEERING 4th Year/7th Semester

4 th Year/7 th Seme	ester	Effective Session		from 2	2018-19			
Course Code	EE403/EEE403	Title of The Course	ELECTRIC DRIVES		L	Т	Р	С
Pre-Requisite	NONE	Co-Requisite	NONE		3	1	0	4

Describe the structure of Electric Drive systems and their role in various applications such as flexible production systems, energy conservation, renewable energy, transportation etc., making Electric Drives an enabling technology.
 Analyze the operation of motor drives system to satisfy four-quadrant operation to meet mechanical load requirements.
 Understand the basic principles of power electronics in drives using switch-mode converters and pulse width modulation to synthesize the voltages in dc and ac motor drives.
 Objective
 Describe the operation of induction machines in steady state that allows them to be controlled in induction-motor drives.
 Learn speed control of induction motor drives in an energy efficient manner using power electronics.
 Learn the basic operation of stepper motors and switched-reluctance motor drives.

□ Realize an appreciation of power quality issues in powering electric drives.

	Course Outcomes
CO1	Conceptualize fundamental elements of drive systems, design important elements of a drive system, understand the
	multi-quadrant operation and analyze it for different types of operation.
CO2	Understand and evaluate dynamics of motor-load combination, Develop the thermal model of a motor, Analyze steady
	state and transient state stability, select and determine the motor power rating for various duty cycles.
CO3	Analyze and perform the dynamics during starting and braking of DC and AC motor, evaluate energy loss and
	implement various methods to reduce it, examine, develop and solve various energy relations during starting and
	braking.
CO4	Acquire detailed knowledge of DC Shunt and Series motor operation using generalized machine theory, Apply the
	concepts of AC-DC and DC-DC Converters to evaluate and enhance the performance of steady and transient state
	operation, Implement speed control and current control loops of a DC Motor drive. Understand how DC Drives may
	pollute the power supply and analyze how to mitigate such pollution.
CO5	Understand the working of various phase controlled converters used in AC Drives. Learn the working principle and
	design details of frequency controlled converters used in induction motor drives. Analyze and perform the modeling and
	controlling CSI based drives.

No.	Content	Contact	Mapped
	Unit 1 Fundamentale of Flootnie Duives	• Hrs.	CO_1
1	Electric drives and its parts, Advantages of electric drives, Classification of electric drives Speed torque conventions and multi-quadrant operations constant torque and constant power operation, Types of load torque: Components, Nature and Classification.	0	COI
	Dynamics of Electric Drives	8	CO2
2	Dynamics of motor-load combination; Steady state stability of Electric Drive; Transient stability of electric drive; Selection of motor power rating; Thermal model of motor for heating and cooling; Classes of motor duty; Determination of motor power rating for continuous duty, short time duty and intermittent duty; Load equalization.		
	Electric Braking	8	CO3
3	Purpose and types of electric braking; Braking of dc, three phase induction and synchronous motors; Dynamics during starting and braking of dc motors; Calculation of acceleration time and energy loss during starting of dc shunt and three phase induction motors; Methods of reducing energy loss during starting; Energy relations during braking, Dynamics during braking of ac motors.		
	Power Electronic Control of DC Drives	8	CO4
4	Single phase and three phase controlled converter fed separately excited dc motor drives (continuous conduction only); Dual converter fed separately excited dc motor drive; Rectifier control of dc series motor; Supply harmonics, power factor and ripples in motor current; Chopper control of separately excited dc motor and dc series motor.		
5	Power Electronic Control of AC Drives	8	CO5
Dofe	Three phase induction motor drive: Static voltage control scheme, Static frequency control scheme: VSI, CSI, and cyclo-converter based drives; Special drives: Switched reluctance motor, Brushless dc motor: Selection of motor for particular applications.		

G.K. Dubey, "Fundamentals of Electric Drives", Narosa publishing House, Reprint 2017.
 S.K. Pillai, "A First Course on Electric Drives", Wiley Eastern Limited, 2nd Edition, 1989.

3. M. Chilkin, "Electric Drives", Mir Publishers, Moscow, 1st Edition, 2002.

4. Mohammed A. El-Sharkawi, "Fundamentals of Electric Drives", Thomson Asia, Pvt. Ltd.

Singapore, 1st Edition, 2000.

5. N.K. De and Prashant K. Sen, "Electric Drives", Prentice Hall of India Ltd., 1st

Edition,2006.

6. V. Subrahmanyam

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
,ĆО																
CO1	3	3	1	1	2		1						2	2	1	2
CO2	3	3	2	1	2								2	2	2	3
CO3	3	3	2	2	2	2								2	2	2
CO4	3	3	3	1	2	1		1			1		2		2	3
CO5	3	3	3	2	2		1		1		1			1	2	3

ELECTRICAL ENGINEERING. 4th Year

		ELECIN	ICAL ENGINEERING, 4 1 ea	Ľ				
				Effective Session	from	2	018-19	
Course Code	EE421/ EEE421	Title of The Course	ELECTRICAL INSULATION IN PO APPARATUS AND SYSTEM	WER	L	Т	Р	С
Pre-Requisit	e NONE	Co-Requisite	NONE		3	1	0	4
Objective	Kno Kno Kno Kno Kno Kno Kno Kno	owledge and application of owledge and application of owledge and application of owledge and application of owledge and application of	of Theory of Break Down In Gaseous, Lic of Generation of High Voltage and Currer of Measurement of High Voltage and Cur of Over Voltage Phenomenon & Insulatio of Non -Destructive Insulation Test Techr	uid and So ats rents n Coordina iiques	lid diele tion	ectrics		
	Course Out	comes						
CO1	Understand electronegati Dielectric, so	and analyze the concep ive gases, non- uniform olid dielectric in practice,	t, design, technique, advancement and n field, vacuum, Liquid Dielectrics, pu composite dielectrics.	application re liquid a	of Breand con	eak De	own In al liquid,	Gases, Solid
CO2	Understand Current Vo generators	l and analyze the concep oltage, alternating voltag	ot, design, technique, advancement and ges, impulse voltages, impulse current	application s and Trip	of Ger ping ar	neration nd con	of High trol of in	direct direct
CO3	CO3 Understand and analyze the concept, design, technique, advancement and application of Measurement of High direct Current Voltages; alternating & Impulse voltages, High direct, alternating & Impulse Currents and Cathode ray oscillographs for impulse voltage and current measurements							direct de ray
CO4 Understand and analyze the conce natural cause for over voltage, Over coordination			pt, design, technique, advancement and voltage due to switching surges and abnor	application mal condition	n of Lig ions and	ghting l Princi	Phenome pal of ins	non as ulation
CO5 Understand and analyze the concept, design, technique, advancement and application dielectrics, Measurement of direct current resistivity, Measurement of dielectric constant a						Dynam loss f	ic prope actor and	rties of Partial

No.	Content	Contac Hrs	t Mapped
	Break Down In Gases: Ionization processes. Townsend's criterion. Breakdown in electronegative	8	CO1
1	gases. Time lags for breakdown. Streamer theory. Paschen's law. Breakdown in non- uniform		
	field. Breakdown in vacuum.		
	Break Down In Liquid Dielectrics: Classification of liquid dielectric, Characteristics of liquid		
	dielectric, Breakdown in pure liquid and commercial liquid.		
	Break Down In Solid Dielectric: Intrinsic breakdown, Electro-mechanical breakdown,		
	Breakdown of solid dielectric in practice, Breakdown in composite dielectrics.		
	Generation of High Voltage and Currents	8	CO2
2	Generation of High direct Current Voltage, Generation of high alternating voltages, Generation of		
	impulse voltages, Generation of impulse currents, Tripping and control of impulse generators		
	Measurement of High Voltage and Currents	8	CO3
3	Measurement of High direct Current Voltages; Measurement of High alternating & Impulse voltages;		
	Measurement of High direct, alternating & Impulse Currents; Cathode ray oscillographs for impulse		
	voltage and current measurements.		
	Over Voltage Phenomenon & Insulation Coordination	8	CO4
4	Lighting Phenomenon as natural cause for over voltage, Overvoltage due to switching surges and		
	abnormal conditions, Principal of insulation coordination		
5	Non -Destructive Insulation Test Techniques	8	CO5
	Dynamic properties of dielectrics, Measurement of direct current resistively, Measurement of dielectric		
_	constant and loss factor, Partial discharge measurements.		
Refe	erences Books:		
1. E	. Kuffel, W.S. Zaengl and J. Kuffel, "High Voltage Engineering", CBS Publishers New Delhi,		
2nd	Edition, 2005.		

2. M.S. Naidu & V. Kamaraju, "High Voltage Engineering", Tata McGraw Hill, 5th edition, 2013.

discharge measurements.

3. C.L. Wadhwa, "High Voltage Engineering", New Age Internationals (P) Limited, 3rd Edition, 2010.

4. M. Khalifa, "High Voltage Engineering: Theory and Practice", Marcel Dekker, 1st edition, 1990.

5. Subir Ray, "An Introduction to High Voltage Engineering", Prentice Hall of India, 2nd edition, 2013.

	_															
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	3	1	2	3							2	3	2	3	3
CO2	3	3	1	2	3							2	3	2	3	3
CO3	3	1	1	2	3							2	3	2	3	3
CO4	3	1	1	2	3							2	3	2	3	3
CO5	3	1	1	2	3							2	3	2	3	3

ELECTRICAL ENGINEERING ,4th Yr

Effective from Session								
Course Code	EE425/EEE425	Title of The Course	EHVAC & EHVDC TRANSMISSION		L	Т	Р	С
Pre-Requisite	None	Co-Requisite	None		3	1	0	4

	٠	Knowledge of ENVAC and EHVDC Transmission
Objectives	•	Design of EHV using software
	•	Knowledge od control circuits used in power transmission network

	Course Outcomes
CO1	Knowledge of EHVDC and EHVAC transmission and conductors used in transmission
CO2	Knowledge of switching and their effects on transmission circuits
CO3	Knowledge of single and three phase converters and design of EHV lines
CO4	Knowledge of different converters used in EHV DC transmission
CO5	Knowledge of protection circuits

No	Content	Contact	Mapped
110.		Hrs.	CO
	Introduction	8	CO1
1	Need of EHV transmission, Standard transmission voltage, Comparison of EHV ac & dc transmission systems and their		
	applications & limitations, Surface voltage gradients in conductor, Distribution of voltage gradients on sub-conductors,		
	Mechanical considerations of transmission lines, Modern trends in EHV AC and DC transmission		
	EHV AC Transmission	8	CO2
2	Corona loss formula, Corona current, Audible noise - generation and characteristics, Corona pulses their generation and		
	properties, Radio interference (RI) effects, Over voltage due to switching, Ferro resonance, Reduction of switching surges		
	on EHV system, Principle of half wave transmission.		
	Consideration for Design of EHV Lines: Design factors under steady state limits, EHV line insulation design based	8	CO3
3	upon transient over voltages, Effects of pollution on performance of EHV lines.		
	Converter Circuits: 1-phase and 3-phase converters (properties and configurations), Cascade of converters		
	EHV DC Transmission-I	8	CO4
4	Types of dc links, converter station, Choice of converter configuration and pulse number, Effect of source inductance on		
	operation of converters, Principle of dc link control, Converter controls characteristics, Firing angle control, Current and		
	excitation angle control, Power control, Starting and stopping of dc link		
5	EHV DC Transmission-II	8	CO5
	Converter faults; Protection against over currents and over voltages; Smoothing reactors; Generation of harmonics; AC		
	and DC filters; Multi Terminal DC systems (MTDC): Types, Control, protection and applications.		
Referen	ces Books:		
1. R. D. I	Begamudre, "Extra High Voltage AC Transmission Engineering", Wiley Eastern, 3rdedition, 2006.		
2. K. R. I	Padiyar, "HVDC Power Transmission Systems: Technology and System Reactions", New Age International, 2nd edition, 198	33.	
3. M. S. 1	Naidu & V. Kamaraju, "High Voltage Engineering", Tata McGraw Hill, 3rd edition,2004.		
4. M. H.	Rashid, "Power Electronics: Circuits, Devices and Applications", Prentice Hall ofIndia, 4th edition, 2014.		
5. S. Rac	, "EHV AC and HVDC Transmission Engineering and Practice", Khanna Publisher,4th edition, 2011.		

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	2										2	3			2
CO2	3	2										2	3	2	2	
CO3	2	3	2									2	2	3	2	3
CO4	3	2	3									2	2	2		2
CO5	2	3	2										2	2	2	2

ELECTRICAL ENGINEERING 4th Year/7th Semester

				Effective Session	from		2018-19	
Course Code	EE427/EEE427	Title of The Course	POWER SYSTEM DYNAMICS		L	Т	Р	С
Pre-Requisite	NONE	Co-Requisite	NONE		3	1	0	4
	• To underst	and the students about	dynamics of Power systems. To develop	a ability fo	r analy	sis of	evetem et	ability

	Course Outcomes
CO1	Given a Power System Dynamics Problems, students shall be able to represent this in various conventional models, identify type of system, apply vector algebra, and formulate the expression in different System Model and solve using mathematical terms.
CO2	Given a Modeling of Synchronous Machine with sources, student shall be able to analyze System Simulation and evaluate the Steady State Performance using Equivalent Circuit of Synchronous Machine.
CO3	For a Excitation systems & Prime Mover Controllers, student shall be able to generate its analytical response by Standard Block Diagram and examine, analyze and evaluate the characteristics by State Equations and Load Modeling.
CO4	For a given System Model, students shall be able to identify its characteristics and for Stator Equation, select suitable design of application of Network Equation, develop various combination for System Simulation Small Signal Analysis with Block Diagram Representation for Single Machine System.
CO5	Given a Modeling and Analysis of Transient and Voltage Stability, student shall be able to define its Stability Evaluation, solve/ analyze, and modify energy functions for direct stability evaluation;

No	Contant	Conta	act Mapped
10.	Coment	Hrs.	CO
	Power System Dynamics Problems	8	CO1
1	Introduction, General basic concept of Power System Stability, States of operation & System		
	Security, System Dynamics Problems, Review of Classical Model, System Model, Analysis of		
	Steady State Stability & Transient Stability		
	•		
	Modelling of Synchronous Machine	8	CO2
2	Introduction, System Simulation, Park's Transformation, Analysis of Steady State Performance, P.		
	U. Quantities and Equivalent Circuit of Synchronous Machine.		
	Excitation systems & Prime Mover Controllers	8	CO3
3	Simplified Representation of Excitation Control, Excitation systems, Modelling, Standard Block		
	Diagram, State Equations, Prime Mover Control System, Transmission Line & Load Modelling		
	Dynamics of Synchronous Generator Connected to Infinite Bus	8	CO4
4	System Model, Stator Equation, Rotor equations, Application of Model 1.1, Network Equation,		
	Calculation of Initial Conditions, System Simulation Small Signal Analysis with Block Diagram		
	Representation for Single Machine System, Synchronizing & Damping Torque Analysis, State		
	Equation.		
5	Modelling and Analysis of Transient and Voltage Stability	8	CO5
	Simulation for Transient Stability Evaluation; Application of energy functions for direct stability		
	evaluation; Voltage Stability: Introduction, Factors affecting voltage collapse, Analysis and		
	comparison with angle stability.		
Refe	rences Books:	· ·	-
1. K.	R. Padiyar, "Power System Dynamics: Stability & Control", BS Publications, 2nd edition.		

2002

2. I. J. Nagrath and M. Gopal, "Control system engineering", Wiley Eastern Ltd, 3rd edition, 2000.

3. Benjamin C. Kuo, "Automatic Control system", Prentice Hall of India Pvt. Ltd, 8th edition,

2003. 4. Prabha Kundur, "Power System Stability and Control", Tata McGraw Hill, 5th edition, 2014

РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	3	2										2	3	1	3
CO2	3	3	2	2	2								2	3	1	3
CO3	3	3	1									2	2	3	1	3
CO4	3	2	3	2	3					2	2		2	3		3
CO5	3	3	3			2	1						2	3	1	3

ELECTRICAL ENGINEERING 4th Year/7th Semester

			Effec Sessi	ctive from ion	2	018-19	
Course Code	EE431/EEE431	Title of The Course	UTILIZATION OF ELECTRICAL ENER AND TRACTION	GY L	Т	Р	С
Pre-Requisite	NONE	Co-Requisite	NONE	3	1	0	4

Objective	 To impart the detail knowledge of different types of Electrical Heating To understand about Electrical Welding, Refrigeration and Air conditioning. To study different definitions of Illuminations and its Laws To understand types of Electric Traction, system of track electrification, Tractive effort. Study of salient features of traction Drives. To impart knowledge of Diesel Electric Traction
-----------	--

	Course Outcomes
CO1	Conceptualize fundamental elements of electrical heating, designing of different elements used in electrical heating, understand working and application of different type of furnaces.
CO2	Understand different types and working of electrical welding, understand different instrument used for electrical welding. Acquire detailed knowledge electro-deposition, laws of electrolysis and its application in different field.
CO3	Acquire knowledge of different Laws of Illuminations, Develop the designing skill for indoor and outdoor lighting system. Understand construction and operation of Refrigeration and air conditioner system, Analyze the electric circuit and Learn the maintenance of domestic refrigerator
CO4	Understand operation, mechanism and types of track electrification used of a traction system. Acquire detailed knowledge of different terminology used in electric traction.
CO5	Acquire knowledge of different motor drives operation, Analyze starting, braking and of different type of motor drives used for traction Apply the concepts of AC-DC and DC-DC Converters for traction drives, Implementation of bridge transition speed control of a DC traction drive. Understand the concept of diesel electric traction.

No.	Content	Contact	Mapped
		Hrs.	CO
	Electric Heating	8	COI
1	Advantages and methods of electric heating, Resistance heating, Electric arc heating, Induction heating, Dielectric		
	heating.		
	Electric Welding: Electric Arc Welding, Electric Resistance welding, Electronic welding control	8	CO2
2	Electrolyte Process: Principles of electro-deposition, Laws of electrolysis, Applications of electrolysis		
	Illumination: Various definitions, Laws of illumination, Requirements of good lighting, Design of	8	CO3
3	indoor lighting and outdoor lighting systems.		
	Refrigeration and Air Conditioning: Refrigeration systems. Domestic refrigerator. Water cooler. Types of air		
	conditioning, Window air conditioner		
	Types of electric traction; Systems of track electrification; Traction mechanics - Types of services, Speed time	8	CO4
4	curve and its simplification, Average and schedule speeds; Tractive effort; Specific energy consumption;	,	
	Mechanics of train movement; Coefficient of adhesion and its influence.		
5	Electric Traction – II	8	CO5
	Salient features of traction drives, Series - parallel control of dc traction drives (Bridge transition) and energy		
	saving Power Electronic control of dc and ac traction drives, Diesel electric traction		
Refe	rences Books:		
1. H	Partab, "Art and Science of Electrical Energy", Dhanpat Rai & Sons, 2014		
2. G	K. Dubey, "Fundamentals of Electric Drives", Narosa Publishing House, 2nd edition, 2015.		
3. H	Partab, "Modern Electric Traction", Dhanpat Rai & Sons, 2013		
4. C.	L. Wadhwa, "Generation, Distribution and Utilization of Electrical Energy", New Age International Publications, 31	d editio	n, 2010
5. E.	Open Shaw Taylor, "Utilization of Electric Energy", Orient Longman, Reprint 2011.		
L			
DO	P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02	PSO3	PSO4

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	1	2	2	2			2		1	2	2	3	1

CO2	3	3	2	1	2	2	2			2		1	2	1	3	1
CO3	3	3	3	3	3	3	3	2	3	3	1	2	2		2	1
CO4	3	3	3	1	1	3		1		1		2	2	1	2	2
CO5	3	3	2	2	1	2	1	1	1	2		3	2			1

3: Strong contribution, 2: Average contribution, 1: Low contribution

ELECTRICAL ENGINEERING 4th Year/7th Semester

				Effective	e from	2	2018-19	
				Session				
Course Coulo		Title of The	HIGH VOLTAGE DC		L	Т	Р	С
Course Code	EE435/EEE435	Course	TRANSMISSION					
Pre- Requisite	NONE	Co-Requisite	NONE		3	1	0	4
Objective	 To introduce stud To familiarize the To expose the stu To Develop the king HVDC transmission To Formulate and different control sch To Develop harm type of protection for To Study and und protection schemes for To Review the ex To Recognize the 	ents with the concept students with the H dents to the harmon nowledge of HVDC over conventional A solve mathematical emes as well as start ifferent harmonics g onic models and use r the filters. erstand the nature o for the same. isting HVDC systen need to follow the a istence of both.	to of HVDC Transmission system. VDC converters and their control syst ics and faults occur in the system and transmission and HVDC converters a AC transmission. problems related to rectifier and inve- ting and stopping of DC links enerated by the converters and their va- the knowledge of circuit theory to de f faults happening on both the AC and ns along with MTDC systems and their advancements in both the existing syst	tem. their preventio nd the applicat rter control me ariation with th velop filters ar DC sides of th r controls ems and HVD0	n. bility an othods a ne chan ne conv C syste	nd adv and le ge in ss the verters ms ar	vantage o arn about firing ang requirem and form ad determ	f gles. ent and nulate ine the

	Course Outcomes
CO1	Choose intelligently AC and DC transmission systems for the dedicated application(s).
CO2	Identify the suitable two-level/multilevel configuration for high power converters.
CO3	Select the suitable protection method for various converter faults.
CO4	Decide the configuration for harmonic mitigation on both AC and DC sides.
CO5	Identify suitable reactive power compensation method and basics of MTDC system.

No	Contant	Contact	Mapped
110.	Content	Hrs.	CO
	General Aspects of HVDC Transmission	8	CO1
1	Introduction to HVDC Transmission, Comparison of HVAC and HVDC systems (Economics of		
	power transmission, Technical Performance and Reliability), Type of HVDC Transmission systems,		
	Description of HVDC transmission system (Types of DC Links and Converter), Planning for		
	HVDC transmission. Modern trends in HVDC technology		
	•		
	Converters	8	CO2
2	Simple rectifier circuits, Rectification circuits for HVDC transmission, HVDC converters (Line		
	commutated and Voltage Source converters), Analysis of Graetz Bridge with and without overlap,		
	Pulse number, 12 pulse firing schemes		
	HVDC System Control	8	CO3
3	HVDC system control (Principles of DC link control, Firing Angle Current and extinction angle		
	control), Converter mal-operations, Commutation failure, Converter control characteristics, Power		
	Control, Starting and stopping of converter bridge, Converter protection, DC Breakers.		
	Reactive Power And Harmonics Control	8	CO4
4	Reactive power requirements, Sources of Reactive Power, Smoothing reactor and DC Lines,		
	Generation of Harmonics, Characteristic and Non-characteristic Harmonics, Troubles due to		
	Harmonics, Harmonics Filters (AC Filters and DC Filters), Active Filters and Passive Filters		
5	Power Flow Analysis	8	CO5

Int	eraction	on betw	een AC	and D	DC syste	em, Pov	ver Flo	ow in A	C/DC	System	ns, DC	system	model,	Basics		
of	Multi-	-termina	al DC (I	MTDC	l) syster	n, Type	es of M	Iulti-ter	minal	DC (M	TDC)	system,	Multi-	In feed		
DO	C Syste	em														
Referen	teferences Books:															
1. Padi	. Padiyar K.R., "HVDC transmission system", Wiley Eastern Ltd., New Delhi, Second															
Edition	dition, 2015.															
2. Arril	. Arrilaga J., "High voltage direct current transmission", Peter Pereginver Ltd. London, U.K.,															
1998.	1998.															
3. Kim	Bark 1	E.W., "I	Direct c	urrent	transm	ission –	Vol.1	", Wile	y Inter	Sciend	ce, Nev	v York,				
1971.									•							
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	3	2								2		1		1	2
CO2	3	3	2	2	2								2	2		3
CO3	3	3	1										2	2		3

3: Strong contribution, 2: average contribution, 1: Low contribution

CO4

CO5

ELECTRICAL ENGINEERING 4th Year/7th Semester

			E: fr	ffective om Sessie	on	2018-19	
Course Code	EE437/EEE437	Title of The Course	ELECTRICAL DISTRIBUTION SYSTEM & AUTOMATION	L	Т	Р	С
Pre-Requisite	None	Co-Requisite	None	3	1	0	4

Objectives

	Course Outcomes
CO1	Knowledge of energy losses, OHTL and UG lines
CO2	Analyze and modelling of distribution system
CO3	Design of distribution system
CO4	Protection analysis of distribution system
CO5	Knowledge of automation systems and sensors

No	Content	Contact	Mapped
190.	Content	Hrs.	CO
	Industrial and commercial distribution system	8	CO1
1	Energy Loss in distribution system, System ground for safety and- protection, Comparison of		
	overhead lines and underground cable system		
	Network model	8	CO2
2	Power flow, short circuit and calculations, Distribution system reliability analysis, Reliability		
	concepts, Markov model, Distribution network reliability, Reliability performance		
	Distribution system expansion planning	8	CO3
3	Load characteristics, Load forecasting, Design concepts, Optimal location of sub-station, Design of		
	radial lines, Solution technique		
	System protection	8	CO4
4	Requirement; Fuses and section analyzers; Over current, under voltage and under frequency		
	protection; Co-ordination of protective device		
5	Introduction to Industrial Automation and Control Architecture of Industrial Automation Systems,	8	CO5
	Introduction to sensors and measurement systems, Temperature measurement, Pressure and Force		
	measurements, Displacement and speed measurement, Flow measurement techniques, Measurement		
	of level.		
Refer	ences Books:		
1. Pat	la. A.S., "Electrical Power Distribution, System", Tata McGraw Hill, 1981.		
2. Tu	var Goner, "Electrical Power Distribution System", McGraw Hill, 1986.		
3. Joh	nson C.D., "Process control instrumentation technology", Prentice-Hall, New Delhi,2006		
4. Kal	si H.S., "Electronic Instrumentation", McGraw Hill, 3rd edition, New Delhi, 2010		

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2									2	3		2	
CO2	2	3	3										2	3		3
CO3	3	2	3									3	3	3	3	
CO4	3	2	2									3	3			3
CO5	3											3	3			3

ELECTRICAL ENGINEERING 4th Year/7th Semester

Effective from Session									
Course Code	EE439	Title of The Course	HIGH POWER SEMICONDUCTOR DEVICES	L	Т	Р	C		
Pre-Requisite	None	Co-Requisite	None	3	1	0	4		
							-		

Objectives	•	Knowledge of latest semiconductor switches
Objectives	•	Apply knowledge of thyristors in hardware based models

	Course Outcomes
CO1	To understand the construction and working of power switches like diode, transistor, IGBT and their practical applications in
	industries.
CO2	Analysis of different types thyristors their practical implementation. To understand the different methods to turn it on and their blocking characteristics.
CO3	To understand the structure and operation of MOSFET, Silicon IGBT, Silicon carbide IGBT and its practical application in electrical
	devices for industries.
CO4	To understand the operation and structure of VMOS and DMOS and its practical application in electrical devices for industries.
CO5	To understand the operation and structure of silicon MCT, BRT, EST, Gallium Nitride devices and its practical application in
	electrical devices for industries

No.	Content														Contact Hrs	Mapped
1	Introduct Voltage A	ion: Po pplicati	ower Swi ons	tching W	Vaveforn	ns, High	Voltage	Power	Device	Structures	, Breakdo	own Mod	el for Sil	icon, High	n8	CO1
2	SCR: Ope	eration d	& structur	re of Silic	con Thyr	istors, Si	licon Ca	rbide Th	yristors d	& Silicon	GTO, Blo	ocking cha	aracteristic	es	8	CO2
3	Power Bipolar Transistors 3 Operation and structure of Silicon IGBT, SiC Planar MOSFET Structures and Silicon Carbide IGBT												8	CO3		
Power MOS Devices 4 Operation and structure of V MOS and DMOS, Heat Transfer in Power MOS devices, Device packaging											8	CO4				
5 High Voltage Devices Operation and structure of silicon MCT, silicon BRT, silicon EST, Gallium nitride devices											8	CO5				
Refer	ences Boo	oks:													•	
1. B. J	ayant Bal	iga, "Fu	ndamenta	als of Pov	ver Sem	iconduct	or Device	es", 3rd (edition, S	Springer, 2	2008					
2. B. J	ayant Bal	iga, "Ac	lvanced H	ligh Volt	tage Pow	er Devic	e Concep	ots", 1st	edition, S	Springer, 1	2011					
3. Rob	ert Perret	, "Powe	r Electroi	nics Semi	iconduct	or Devic	es", 1st e	dition, V	Viley, 20	09						
4. Tad	ahiro Ohr	ni, Andı	e A. Jaec	klin, "Po	wer Sen	niconduc	tor Devic	ces & Ci	rcuits", 1	st edition	,Springer,	1992				
5. Jose	ef Lutz, H	einrich S	Schlanger	notto, Uv	ve Scheu	ermann,	Rik De I	Doncker,	"Semico	onductorP	ower Dev	ices", Spr	ringer, 1st	edition, 20)11	
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	1	1	1	1	2	2	1					3	2	1	2
CO2	3	2	3	2	2	3	1	1	1				3	1	2	2
CO3	3	2	3	2	2	2	2	1	1		1	2	3	2	2	2

3: Strong contribution, 2: average contribution, 1: Low contribution

CO4

CO5

ELECTRICAL ENGINEERING

			Effective Session	from		2018-19	
Course Code	EE441/EEE441	Title of The Course	FLEXIBLE AC TRANSMISSION SYSTEMS	L	Т	Р	С
Pre-Requisite	NONE	Co-Requisite	NONE	3	1	0	4

 Objective
 • To familiarize power engineers about the Flexible AC Transmission devices and their applications in power systems with respect to active/reactive power control.

	Course Outcomes
CO1	Understand the importance of controllable parameters and benefits of FACTS controllers.
CO2	Know the significance of shunt, series compensation and role of FACTS devices on system control.
CO3	Analyze the functional operation and control of GCSC, TSSC and TCSC.
CO4	Describe the principles, operation and control of UPFC and IPFC.
CO5	Knowledge of UPFC and IPFC

No	Content	Contac	ct Mapped
1.00.		Hrs.	CO
	Introduction to FACTS	8	CO1
1	Challenges and needs, Power Flow in AC transmission line, Power flow control, Description and		
	definition of Flexible AC Transmission Systems (FACTS) controllers, Static power converter		
	structures.		
			~ ~ ~
	Power Semiconductor devices	8	CO2
2	Types of power semiconductor devices, Voltage-sourced and Current-sourced converters, Converter		
	output and harmonic control, Power converter control issues, Reactive power compensation.		
	Shunt Compensation	8	CO3
3	Static VAR compensator (SVC), Static Synchronous Compensator (STATCOM), Thyristor controlled		
	Reactor (TCR) and Thyristor switched Reactor (TSR) Operation and control,		
	Configurations and applications		
	Series Compensation: Thyristor Controlled Series Capacitor (TCSC), Static Synchronous Series	8	CO4
4	Compensator (SSSC), Operation and control, Configurations and applications.		
	Voltage and Phase angle regulators: Thyristor controlled voltage regulators (TCVRs) and		
	Thyristor controlled phase angle regulators (TCPARs) operation and control.		
5	Shunt-Series compensation	8	CO5
	Unified power flow controller (UPFC), Power flow studies with FACTS controllers, Operational		
	constraints, Interline Power flow Controller (IPFC), Operation and control.		
Refe	rences Books:		
1. Na	arain G. Hingorani, "Understanding FACTS", Wiley IEEE PRESS, Reprint 2015.		
2. K	R. Padiyar, "FACTS Controllers in Transmission & Distribution", 3rd edition 2017.		
3. V.	K. Sood, "HVDC and FACTS Controllers: Applications of Static Converters in Power		
Syste	ems", 2004.		
4. Eı	rique Acha, C.R. Feurte, Esquivel, "Modelling and Simulation in Power Networks",		
Wile	y-India edition, 2004.		

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3		1				2	1			2	2	2	2
CO2	3	3	3	1			3		3	1	3		2	2	2	3
CO3	3	3	3	1					3	1	3	1	2	2	2	3
CO4	3	3	3	1					3	1		1	2	2	2	3
CO5													2	2	2	3

ELECTRICAL ENGINEERING 4th Year/7th Semester

				Effective Session	from		2018-19	
Course Code	EE443/EEE443	Title of The Course	SPECIAL ELECTRICAL MACHINI	ES	L	Т	Р	С
Pre-Requisite	NONE	Co-Requisite	NONE		3	1	0	4

	 Knowledge of slip power recovery scheme To get knowledge of constructional features of special machines such as single-phase synchronous motor and ac
Objective	servomotor. To attain knowledge of working of stepper motor and switched reluctance motor and their drive circuits To study about different types of magnets and their application in different machines To have the knowledge of working and application of linear induction motor and universal motor

	Course Outcomes
CO1	Evaluate the performance special induction motors and slip power recovery schemes
CO2	Analyze the performance of single-phase synchronous motor and ac servomotor
CO3	Evaluate the performance of drive circuit of stepper motors
CO4	Knowledge of permanent magnet machines
CO5	Knowledge of linear induction motor and universal motor used for special applications

No	Content	Contact	Mapped
110.	Content	Hrs.	CO
	Poly-phase AC Machines	8	CO1
1	Construction and performance of double cage and deep bar three phase induction motors, E.m.f.		
	injection in rotor circuit of slip ring induction motor, Concept of constant torque and constant power		
	controls, Static slip power recovery control schemes (constant torque and constant power).		
	· Single phase synchronous motor: Construction, Operating principle and characteristics of	8	CO2
2	reluctance and hysteresis motors.		
	Two Phase AC Servomotors: Construction, Torque-speed characteristics, Performance and		
	applications.		
	Stepper Motors: Principle of operation; Variable reluctance, Permanent magnet and Hybrid	8	CO3
3	stepper motors; Characteristics, drive circuits and applications.		
	Switched Reluctance Motors: Construction, Principle of operation, Torque production, Modes of		
	operation, Drive circuits.		
	Permanent Magnet Machines	8	CO4
4	Types of permanent magnets and their magnetization characteristics, Demagnetizing effect,		
	Permanent magnet dc motors, Sinusoidal PM ac motors, Brushless dc motors and their important		
	features and applications, PCB motors, Introduction to permanent magnet generators.		
5	Single Phase Commutator Motors:	8	CO5
	Construction, Principle of operation; Characteristics of universal and repulsion motors; Linear		
	Induction Motors: Construction, Principle of operation, Linear force and applications.		
Refe	rences Books:		
1. P.	S. Bimbhra "Generalized Theory of Electrical Machines", Khanna Publishers Limited, 5th		
Editi	on, 4th Reprint, New Delhi, 2000		
2. P.	C. Sen, "Principles of Electrical Machines and Power Electronics", John Wiley & Sons,		
2nd e	edition, 2001.		
3. G.	K. Dubey, "Fundamentals of Electric Drives", Narosa Publishing House, 2nd edition,		
repri	nt 2017.		
4. Cy	ril G. Veinott, "Fractional and Sub-fractional horse power electric motors", McGraw Hill		
Inter	national, 1986		
5. M	.G. Say, "Alternating current Machines", Pitman & Sons, 4th edition, 1976		

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
co																
CO1	3	2	2	1								1	2	2	2	2
CO2	3	2										1	3	2	2	2
CO3	3	3	2	2								1	3	2	1	2
CO4	3	2										1	2	1	2	2
CO5	3	1										1	3	1	1	2

ELECTRICAL ENGINEERING 4th Year /7th Semester

				Effecti	ve			
				from			2018-19	
				Session	n			
Course Code		Title of The	ELECTRICAL SYSTEM &		L	Т	Р	С
Course Code	EE445/EEE445	Course	SUBSTATION DESIGN					
Pre-Requisite	NONE	Co-Requisite	NONE		3	1	0	4

	To develop knowledge of general aspects of electrical system design
	 Having Knowledge of Medium and HV installations
	• Having knowledge of installation of transformers, Switchgears and protective devices
Objectives	To get knowledge of Design of illumination systems
	• To get the knowledge of different types of substation, Substation equipment and its function.

	Course Outcomes
CO1	Understands the general aspects of electrical system design
CO2	Selection of main distribution board; Sub distribution board; MCCB, ELCB, MCB and cables for sub circuits
CO3	Understand installation of transformers, Switchgears and protective devices
CO4	Knowledge of Design of illumination systems
CO5	Knowledge of types of substation, substation equipment and its function.

No	Content	Contact	Mapped
110.	Content	Hrs.	CO
	General Aspects	8	CO1
1	National Electric Code (NEC) - scope and safety aspects applicable to low and medium		
	(domestic)voltage installations, Electric services in buildings, Classification of voltages,		
	Standards and specifications, IE Rules, IS Codes, General aspects of the design of	2	
	electrical installations for domestic buildings – connected load calculation.		
	Distribution board	8	CO2
2	Selection of main distribution board; Sub distribution board; MCCB, ELCB, MCB and		
	cables forsub circuits; Pre-commissioning tests of domestic installations; Medium and		
	HV installations –Selection of cables, Guidelines for cable installation & installation of		
	induction motors.		
	Transformers	8	CO3
3	Selection and installation of transformers, Switchgears and protective devices; Design of		
	indoor and outdoor 11 KV substation up to 630 KVA: Design of Earthing system - Pipe,		
	plate and mat earthing; Lightning arresters; Metering and protection; HT and LT breaker		
	control panels; Selection of standby generator, installation and its protection.		
	Illumination systems	8	CO4
4	Design of illumination systems – Yard lighting, Street lighting and Flood lighting;		
	Design and layout of installation for recreational or assembly buildings and high rise		
_	building; Design of Electrical system related to fire fighting, lifts and escalators.		
5	Substation	8	CO5
	Types of Substation, Substation equipment and its function, Bus bar arrangement, Single		
	busbar systems and duplicate bus-bar systems, Capacitor bank, Earthing practices,		
	Substation automation		
Refe	prences Books:		
1. M	.K.Giridharan, "Electrical System Design". I.K. International Pvt. Ltd., 2011.		
2. Ra	aina & Bhattacharya, "Electrical Design Estimating and Costing". New Age International,	st Editio	n, 1991.
3. Bı	ureau of Indian Standards publications, "National Electric Code", 1986.		
4. S.	N. Singh, "Electric Power Generation, Transmission & Distribution", PHI, 2015		

PO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
co																
CO1	3	2		1								1	3		2	3
CO2	3	2					1					1		2		3
CO3	3	1										2		3		3
CO4	3	2										1		3		3
CO5	3	2					1					1	2			3

ELECTRICAL ENGINEERING

			Effe	ctive from Sess	ion		
Course Code	EE 303	Title of The Course	POWER ELECTRONICS	L	Т	Р	С
Pre-Requisite	None	Co-Requisite	None	3	1	0	4

Objectives

	Course Outcomes
CO1	Understand and analyze the concept, design, technique, advancement and application of Bipolar junction transistor, Power Metal oxide semiconductor field effect transistor, Insulated gate bipolar junction transistor, operation of Silicon controlled rectifier (SCR), Firing circuits of Thyristor, Turn on methods of a Thyristor and Thyristor turn-off process.
CO2	Understand and analyze the concept, design, technique, advancement and application of Protection of Thyristor, Series and parallel operation of SCR, Gate turn off (GTO) thyristor. Understand and analyze the concept and knowledge advancement in Gate characteristic of an SCR, Dynamic characteristics of SCR, Two transistor analogy, Rating of an SCR
CO3	Understand and analyze the concept, design, technique, advancement and application of single phase half wave and full wave controlled rectifiers with different types of load, Effect of source impedance on the performance of full wave converter, Dual converter, three phase converters and cyclo-converters
CO4	Understand and analyze the concept, design, technique, advancement and application of Single phase bridge inverters (half and full wave), Pulse width modulation (PWM) inverters, Series inverter, Parallel inverter, Mc-Murray half bridge inverter, Three phase inverter.
CO5	Understand and analyze the concept, design, technique, advancement and application of choppers, chopper circuits, Multi quadrant choppers, Commutation of choppers, Switched mode power supplies.

No	Contant	Contact	Mapped
INO.	Content	Hrs.	CO
	Power Transistors I Classification of power transistors, Bipolar junction transistor (BJT), Power Metal oxide semiconductor field	8	CO1
1	effect transistor (MOSFET), Insulated gate bipolar junction transistor (IGBT), Basic principle of operation of Silicon controlled	L	
	rectifier (SCR), Voltage vs Current characteristics of SCR, Firing circuits of Thyristor, Turn on methods of a Thyristor, Thyristor	,	
	turn-off process.		
	Power Transistors II :Protection of Thyristor, Gate characteristic of an SCR, Dynamic characteristics of SCR, Series and parallel	8	CO2
2	operation of SCR, Two transistor analogy, Rating of an SCR, Gate turn off (GTO) thyristor.		
	Controlled Rectifiers Analysis of single phase half wave and full wave controlled rectifiers with different types of load, Effect of	8	CO3
3	source impedance on the performance of full wave converter, Dual converter, Introduction to three phase converters and cyclo-		
	converters.		
	Classification of inverters, Single phase bridge inverters (half and full wave), Pulse width modulation (PWM) inverters, Series	8	CO4
4	inverter, Parallel inverter, Mc-Murray half bridge inverter, Three phase inverter.		
5	Choppers :Principle of choppers, Analysis of chopper circuits, Multi quadrant choppers, Commutation of choppers, Switched	8	CO5
	mode power supplies.		
Ref	erences Books:		
1.M	I. H. Rashid, "Power Electronics: Devices, Circuits and applications", Pearson, 4th edition, 2014.		
2. J	. M. Jacob, "Power Electronics: Principles and applications", Thomson Press (India) Ltd; 1st edition, 2006.		
3. \	Vedam Subramanium, "Power Electronics: Devices, Converters, Application", New Age Int. (P) Ltd., 2nd edition, 2012.		
4. N	Ved Mohan, "Power Electronics: Converters, Applications and Design", Wiley, 3rd edition, 2002.		

PO/ CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	1	3	3	2	2	2	1	1	2	3	2	3	3
CO2	3	3	2	1	3	3	2	2	2	1	1	2	3	2	2	2
CO3	3	3	2	1	3	3	2	2	2	1	1	2	2	2	2	3
CO4	3	3	2	1	3	3	2	2	2	1	1	2	2	3	2	2
CO5	3	3	2	1	3	3	2	2	2	1	1	2	3	3	2	3