T.C													
Effective from Session: 2018-19													
Course Code	CH314	Title of the Course	Т	Р	С								
Year	Third	Semester	Fifth	3	1	0	4						
Pre-Requisite	10+2 with Chemistry	Co-requisite											
	The main objective of thi	s course is to understand	I the bonding in coordination compounds, electron	nic spe	ctra ar	ıd mag	netic						
Course Objectives	behaviour of the coordin	ation compounds and so	ome important inorganic compounds. The other i	mporta	ant obj	ective	is to						
	study the reaction mechan	nism in coordination com	pounds and importance of inorganic metals in bio-	inorga	nic che	emistry	·.						

	Course Outcomes
CO1	Understand the concept of coordination chemistry with different theories.
CO2	Understand and evaluate the electronic spectra and magnetism of transition metal complexes.
CO3	Study of some important inorganic compounds and their applications
CO4	Understand the different reaction mechanisms in coordination compounds.
CO5	Understand the concept of Bio-inorganic chemistry and the role of metal ions in human body.

Unit No.	Title of tl	ne Unit					Contact Hrs.	Mapped CO						
1	Bonding in coordinatio compounds		Electronic c first/second/ compounds, $Fe(CN)_6^{3-}$, I octahedral, s stabilization and low spir	(third trans VBT (hyb Fe(CN) ₆ ⁴⁻ E square plana energy, pa	ition series oridization/m Elementary (or and tetrah- iring energy	s elements, agnetism/ge Crystal Fiel edral fields, , Magnetic	IUPAC cometry) of d Theory: s factioras aff moment from	nomenclatur Ni(CN) $_4^{2^-}$, plitting of ecting 10 D m crystal fie	re of coor NI(CO) ₄ , I dn configura q value, cry	rdination $Ni(Cl)_4^{2^2}$, ations in stal field	08	01		
2	Spectra and magnetism transition m	of	Spectro-cher spectroscopi spectra, LS susceptibilit method, Far	ic ground sta coupling. y, Curie and	ates, selection Types of the Curie-Weis	on rules for e magnetism	electronic sp and temper	ectral transi ature deper	tions, charge	transfer magnetic	08	02		
3	Selected top advanced in compounds	organic	Structure/sy permangana chemical re phosphazine (Copper and	borazine, 1 method	08	03								
4	Reaction mechanism ligand displ reactions	-	reaction, El- mechanism, parameters,	itution reaction in square planar complexes (Trans effect), mechanism of substitution on, Electron transfer reactions and its classification. Outer sphere electron transfer anism, chemical activation, Marcus theory, cross-reactions, thermodynamical/kinetic neters, inner-sphere electron transfer mechanisms, effect of the nature of /ligandss, bridging group effects, cross reactions.										
5	Bioinorgani chemistry	ic	Biological role of inorganic metals in human body (description only), Electron transfer proteins, Metal ion transport and storage, Feritin and its structure, Oxygen transport by herr proteins, hemoglobin and myoglobin, Dioxygen transport (hemoglobin, hemocyanin an Blue copper proteins), Biomineralization (ferritin), zinc finger protein, Carbonic anhydrase carboxy peptidase, carboxypeptidase A/B.									05		
Referen	ce Books:													
Inorgani	c Chemistry:	Structure a	nd Reactivity	, James E. H	Huheey, Har	per and Row	Publishers,	New York						
Advance	ed Inorganic (Chemistry:	F.A. Cotton a	nd G. Wilki	nson, Inters	cience.								
Inorgani	c Reaction M	echanism,	Basolo and R	.G. Pearson	, John Wille	у.								
	ing Source:													
	•		05/104105033											
-			nistry/5-112-p	-							-	-ligands/		
https://w	ww.chem.tar	nu.edu/rgro	oup/marcetta/c				Osubset%20 pping of CC				f			
PO-PSO	DO 1	DOJ	PO2								DCO 4	DEOS		
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	3	-	-	-	-	3	3	3	3	1	1	-		
CO2	3	-	-	-	-	3	3	3	3	1	1	-		
CO3 CO4	3	-	-	-	-	3	3	3	3	1	1	2		
C04 C05	3	-	-	-	-	3	3	3	3	1	1	-		
	5	-	-	-	-	5	5	5	5	1	1	-		

Effective from Session: 2018-19												
Course Code	CH315	Title of the Course	Advance Organic Chemistry	L	Т	Р	С					
Year	Third	Semester	Fifth	3	1	0	4					
Pre-Requisite	10+2 with Chemistry	Co-requisite										
Course Objectives		ductive effect, hypercon	e nomenclature of organic compounds, structure ajugation, mesomeric effects, hydrogen bonding									

	Course Outcomes
CO1	Analyze structure and chemical reactions of organomagnesium and organolithium compounds.
CO2	Understand and evaluate the structure and related reactions of heterocyclic compounds.
CO3	Understand and analyze the classification, configuration and conformation of carbohydrates.
CO4	Understand and evaluate the structure of amino acids, peptides, proteins and nucleic acids
CO5	Understand and analyze the structure and classification of dyes.

Unit No.	Title of th	e Unit				Content of	of Unit				Contact Hrs.	Mapped CO	
1	Organometa organosulph compounds	nur	Organomagi Organolithiu formation ar	im Compound chemical	nds: format reaction of t	ion and che	emical reaction onic acids.	ons. Nomer	nclature, me	thods of	08	01	
2	Heterocyclic compounds		Molecular of pyridine. Co and chemica indole synth	omparison of l reactions of	f basicity of of indole, qu	f pyridine, p iinoline and	piperidine an isoquinoline	d pyrrole. Ne with specia	Aethods of s	synthesis	08	02	
3	Carbohydra	tes	Carbohydrat Erythro and glucose and glycosides, disaccharide	threodiast fructose, c ether and s (maltose, s	ereomers, 1 chain length esters. Cy sucrose, lact	nechanism nening and clic structu ose) and pol	of osazone chain shorte re of D(+) lysaccharide	formation, ening of alc glucose. s/starch and	Interconve loses. Form An introdu cellulose.	rsion of nation of ction to	08	03	
4	Acids, peptides, proteins and nucleic acids Classification, structure and stereochemistry of amino acids, isoelectric point. Classification of protiens, peptides, structure determination, and end group analysis. Nucleic acids: Introduction –Classification of Nucleic Acids Ribonucleosides and Ribonucleotides. The double helical structure of DNA. 08 04												
5	DyesDyes: Introduction of the history of dyes. Landmarks in the historical development from Natural to synthetic dyes. Introduction and classification of dyes on the basis of structure Colour and chemical constitution of dyes. Structure and uses of phenolphthalein, fluorescein , Eosin, Malachite green, Methylene blue , Indigo. Napthol yellow- S, Crystal violet.0805												
Referen	ce Books:		, ,		,	<u> </u>	<u>,</u>						
Advance	ed Organic Ch	emistry, B	ahl&Bahl, S.	Chand & Co	o. Ltd.								
Organic	Chemistry Vo	ol.I& II, I.I	. Finar										
Fundame	entals of Orga	nic Chemi	stry, NafisHa	ider, S. Cha	nd & Co. Lt	d.							
A text bo	ook of Organi	c Chemistr	y, Bahl&Bah	l, S. Chand	& Co. Ltd.								
Organic	Chemistry Vo	ol.I, II & II	I, Dr. Jagdam	ba Singh, L	.D.S. Yadav	, Pragati Pra	kashan.						
e-Learni	ing Source:												
	ww.khanacad	lemy.org/so	cience/organi	c-chemistry									
https://ch	nem.libretexts	.org/Books	shelves/Orgar	ic_Chemist	ry/Map%3A	_Organic_O	Chemistry_(S	Smith)/Chap	ter_06%3A_	Understa	ndingOrgani	c_Reactions	
https://w	ww.dummies	.com/educ	ation/science/	biology/the-	basics-of-or	ganic-chem	istry/						
https://w	ww.toppr.com	n/guides/cl	nemistry/orga	nic-chemistr	ry/								
				Course Art	iculation M	latrix: (Ma	pping of CC	os with POs	and PSOs)				
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	
C01	3	2	1	-	1	-	3	3	2	2	2	1	
CO2	2	2	1	-	2	-	3	2	2	2	2	1	
CO3	3	3	1	-	1	-	2	3	2	2	2	2	
CO4	2	3	1	-	1	-	3	3	2	2	2	2	
CO5	2	2	1	-	1	-	2	2	2	-	-	-	
			1- Low Co	rrelation; 2	- Moderate	Correlatio	n; 3- Substa	antial Corre	lation				

Name & Sign of Program Coordinator

Effective from Session: 2018-19												
Course Code	CH319	Title of the Course	Basics of Chromatographic Techniques	L	Т	Р	С					
Year	Third	Semester	Fifth	2	1	0	3					
Pre-Requisite	10+2 with Chemistry	Co-requisite										
Course Objectives	I I	0 1	ques such as Thin layer chromatography, Pape atography and Ion exchange chromatography.	er chro	matog	raphy,	Gas					

	Course Outcomes
CO1	Understand the chromatographic techniques and its classification.
CO2	Evaluate Thin layer chromatography; principle and its applications. Paper chromatography and its applications. Separation of amino acid mixture.
CO3	Comprehension of Principles of gas-liquid chromatography, Instrumentation and its Industrial applications.
CO4	Able to discuss Normal and reverse phase HPLC, Isocratic and gradient elution, Instrumentation; mobile phase reservoir, column and detector and Industrial applications of HPLC.
CO5	Analyze the action of resins, experimental techniques, applications, separation of metal ions, separation of chloride and Bromide ions -removal of interfering radicals.

Unit No.	Title of th	e Unit				Content o					Contact Hrs.	Mapped CO
1	Separa technic		Chromatogra chromatogra mobile pha chromatogra	phy, chrom ase, princi	atograms, o ple of a	distribution dsorption	constant, re and partit	etention tim	e, stationary atography,	phase, column	07	01
2	Thin la chromatog		Principle, ch solvents use amino acid r	d, principle, nixture.	, Rf value, f	factors influ	encing Rf v	alue, applic	ations. Separ	ation of	07	02
3	Gas chromato;		Introduction Sample inject and Thermal	ction, Colun	nns, Stationa	ary phase, D	etectors (Fl				07	03
4	High perfo liqui chromato	d	Introduction Instrumentation Electrochemic	of HPLC, on; mobile cal) and Indus	Normal and phase res trial application	d reverse p servoir, colu ons of HPLC.	bhase HPLC umn and	detector (U	V-visible ab	sorption,	07	04
5	Ion exch chromatog		Principle, re ions, separat							of metal	07	05
Reference	e Books:											
Fundame	ntals of Ana	lytical chen	nistry, Dougla	as A. Skoog,	, Donald M.	West, F. Jan	mes Holler,	7th edition, 1	Harcourt coll	ege public	cations.	
Principle	s and practic	e of analyti	cal chemistry	, F. W. Fifie	ld, D. Keale	ey, 5th editio	on, Blackwe	ll publication	1.			
Analytica	al chemistry,	Gary D. Ch	nristian, 6th e	dition, Wile	y and sons p	ublication.						
Basic con	ncepts of ana	lytical chen	nistry, S. M. I	Kopper, Nev	w Age Interr	national Pub	lishers. Ana	lytical chem	istry, D. Kea	ley, P.J.H	laines, Viva	books Pvt.
Analytica	al chemistry-	Instrument	al Technique	s (Vol. II) –	Mahindu Si	ingh, Domin	ant publishe	ers. Ltd				
e-Learni	ng Source:											
https://m	icrobenotes.c	om/chroma	tography-pri	nciple-types	-and-applica	ations/						
			cience/class-1							ic-princip	les-and	
*			n-in-methods	*		•	nds/v/basics	-of-chromate	ography			
-			makhter7374				10	1 .	1 1 .	1. 1	•	20
nttp://ww	/w.biologydis	scussion.co	m/biochemist	•		<u> </u>	• •	or with POs		ues-biocr	lemistry/12/	30
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	2	2	1	3	3	3	2	-	2	-
CO2	3	2	2	2	1	3	3	3	2	-	2	-
CO3	3	2	2	2	1	3	3	-	2	-		
CO4	3	2	2	2	1	3	3	3	2	-	2	-
CO5	3	2	2	2	1	3	3	3	2	-	2	-
			1- Low Co	rrelation; 2	- Moderate	Correlatio	n; 3- Substa	antial Corre	lation			•

Effective from Session: 2018-19												
Course Code	CH316	Title of the Course	Chemistry Practical-V	L	Т	Р	С					
Year	Third	Semester	Fifth	0	0	4	2					
Pre-Requisite	10+2 with Chemistry	Co-requisite										
Course Objectives		5	ly in a laboratory environment, practical/technica problems,transferable skills like ability to wor									

	Course Outcomes
CO1	To acquire knowledge of the synthesis and analysis of cis- and trans-bisoxalatodiaqua chromate, potassium trioxalatoferrate (III), and potassium trioxalatoferrate (III).
CO2	Understand how to determine concentration and quantify Fe ³⁺ content using the Beer-Lambert rule.
CO3	To develop the capability to differentiate natural goods from dyes with the help of chromatography.
CO4	To develop the ability to find racemic mixtures and synthesise methyl orange and methyl red.
CO5	To use oxidation and reduction processes to conduct the synthesis of organic molecules.

Unit No.	Title of th Unit	e			(Content of U	U nit				Contact Hrs.	Mapped CO
		Svnt	hesis and Ar	alvsis of the	e Potassium	trioxalatofe	errate (III). I	$K_3[Fe(C_2O_4)]$	3] and determ	nination		
1	Experiment-								, K ₃ [Fe(C ₂ O		4	1
	-		mination of	its compositi	ion by perma	agnometry.						
2	Experiment-		aration of cis								4	1
3	Experiment-	solu	ion					e the conce	ntration of th	ne given	4	2
4	Experiment-	04 Dete	rmination of	Fe ³⁺ content	t by thiocyar	nate method					4	2
5	Experiment-		ration of Flu	orescein and	methylene	blue by colu	mn chromat	ography.			4	3
6	Experiment-		ration of leaf								4	3
7	Experiment-	07 Reso	lution of rac	emic mixture	e of (+) man	delic acid					4	4
8	Experiment-08 Diazotization/coupling: Preparation of methyl orange and methyl red										4	4
9	Experiment-	ent-09 Oxidation: Preparation of benzoic acid from toluence										5
10	Experiment-10 Reduction: Preparation of aniline from nitrobenzene											5
Referen	ce Books:											
CRC Ha	ndbook of Ch	emistry and	d Physics: 97	th ed.								
McGraw	-Hill Concise	Encyclope	dia of Chem	stry by McO	Graw-Hill Ec	ducation Sta	ff.					
A Dictio	nary of Chem	istry by Jo	nathan Law (Editor); Ric	hard Rennie	•						
Encyclop	pedia of Chem	istry by D	on Rittner; R	onald A.								
e-Learn	ing Source:											
https://w	ww.fandm.ed	u/uploads/	files/7964570	1812579729	-genchem-1	eference-for	r-web.pdf					
http://file	e.akfarmahadł	ika.ac.id/I	E-BOOK/12-	1213-akfarm	ahad-16-1-v	ogelqu-d.pd	lf					
https://fa	culty.psau.ed	ı.sa/filedov	vnload/doc-6	-pdf-f06110	ef2e1e1ae1	19cbacf71dc	117732-origi	inal.pdf				
https://w	ww.stem.org.	uk/resourc	es/collection/	3959/practic	al-chemistr	у						
				Course Art	iculation M	latrix: (Ma	pping of CC)s with POs	and PSOs)			
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	-	-	-	-	3	2	2	-	-	-	2
CO2	3	-	-	2	-	2						
CO3	-	-	-	-	2	2						
CO4	3	-	-	-	1	2	3	-	1	-	1	2
CO5	3	-	-	-	-	3	2	2	-	-	1	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2018-19									
Course Code	MT301	Title of the Course	Advanced Calculus	L	Т	Р	С		
Year	Third	Semester	Fifth	3	1	0	4		
Pre-Requisite	10+2 with Mathematics	Co-requisite							
	The purpose of this undergrad	The purpose of this undergraduate course is to impart basic and key knowledge of differential & integral calculus. Students will							
	be able to evaluate derivative	be able to evaluate derivative of several functions using different techniques. They will also learn to evaluate different types of							
Course Objectives	integrals. After successful cor	npletion of course, the	student will be able to explore subject into their resr	oective	dimens	ions.			

	Course Outcomes
CO1	Students will gain an understanding of Function of several variables, Domains and Range, Functional notation, Limits and continuity and differentiability. They will also learn to find Partial derivatives, Differential of functions of n variables, Differentials of composite functions by using the chain rule.
CO2	Students will be able to understand Implicit functions, Inverse functions, They will also study directional derivatives and will be able to find Partial derivatives of higher order, Higher derivatives of composite functions. They will learn to find Maxima and minima of functions of several variables.
CO3	Students will gain an understanding of Line integrals in the plane, Basic properties of Line integrals, Line integrals as integrals of vectors and will be able to solve line integral by Green's theorem, and get knowledge of independence of path, simply connected domains, Extension of result of multiply connected domains.
CO4	Students will create the own understanding and find Double integral over a rectangular region, Double integral as volume, Area of a region in a plane., Transformation of double integral from Cartesian to polar co - ordinate and vice versa. They will study triple integral and learn to solve them in Cartesian, cylindrical and spherical co – ordinate.
CO5	Students will gain an understanding of solution of Improper integrals, convergence of Camparison test, convergence of Abel's test, Dirichlet's test, convergence of. They will also study convergence of beta and gamma functions.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1		Function of several variables, Domains and Range, Functional notation, Limits and continuity and differentiability, Partial derivatives, Differential of functions of n variables, Differentials of composite functions, chain rule.	8	2
2		Implicit functions, Inverse functions, The directional derivatives, Partial derivatives of higher order, Higher derivatives of composite functions, Maxima and minima of functions of several variables.	8	2
3		Line integrals in the plane, Basic properties of Line integrals, Line integrals as integrals of vectors, Green's theorem, independence of path, simply connected domains, Extension of result of multiply connected domains.	8	3
4		Double integral over a rectangle region, Double integral as volume, Area of a region in a plane, Transformation of double integral from Cartesian to polar co - ordinate and vice versa, Triple integral in Cartesian, cylindrical and spherical co -ordinate.	8	3
5		Improper integrals, convergence of $\int_{a}^{\infty} f(x)dx$, Camparison test, convergence of $\int_{a}^{\infty} \frac{dx}{x^{n}}dx$, $a > 0$, Abel's test, Dirichlet's test, convergence of $\int_{a}^{\infty} \frac{dx}{(x-a)^{n}}dx$, $a > 0$, convergence of beta and gamma functions.	8	2
Referen	ce Books:			
		D. Wier, J. Hass: Calculus, Pearsons Education	D . I . I	
		Arora : Mathematical analysis, Wiley Eastern Ltd; D. V. Widder: Advanced Calculus, Prentice Hall of India	Pvt. Ltd.	
e-Lear	rning Source			
https://	/nptel.ac.in/co	purses/111107108/		
file:///C	C:/Users/Adm	in/Downloads/Vector%20Calculus%20by%20Krishna%20Series.pdf		

https://www.academia.edu/8509213/Advanced_Calculus._Fifth_Edition-Wifred_Kaplan

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO4	PSO5
CO1	3	2	2	1	1	1	2	2	2	2	3
CO2	3	2	2	1	1	1	2	1	1	2	2
CO3	3	2	2	1	1	1	2	2	2	2	2
CO4	3	1	2	1	1	1	2	2	2	3	2
CO5	3	1	2	1	1	1	2	3	2	3	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2018-19							
Course Code	MT302	MT302 Title of the Course Mathematical Statistics L T P					
Year	Third	Semester	Fifth	2	1	0	3
Pre-Requisite	10+2 with Mathematics Co-requisite						
Course Objectives	other fields of sciences. C	Dur everyday lives, as iques for quantifying	ern statistics and its applications for decision-making in 6 well as economic and business activities, are full of data these uncertainties. The course is heavily oriented tow	analys	is and	distrib	oution

	Course Outcomes
COI	To understand the definition and scope of Statistics, concepts of statistical population and sample. Quantitative and qualitative data, primary and secondary sources of data collection, scales of measurement- nominal, ordinal, interval and ratio. Presentation of data: tabular and graphical form including bar diagram, histogram, pie chart, frequency curve and frequency polygon
CO2	Able to solve Measures of Central Tendency: Arithmetic mean, median, mode, geometric mean and harmonic mean, quartiles and percentiles. Measures of Dispersion: range, quartile deviation, mean deviation, standard deviation and variance, coefficient of variation and coefficient of skewness
COS	To understand Bivariate data: Definition, scatter diagram, Karl Pearson's coefficient of correlation Spearman coefficient rank correlation and tied ranks. Simple linear regression, principle of least squares
CO4	To understand Definitions of Probability – classical, statistical, and axiomatic, random experiments, sample space and events, laws of addition and multiplication, independent events, conditional Probability and Bayes' theorem
COS	To understand Mathematical expectation, Probability mass function (pmf) and Probability density function (pdf). Binomial Probability distributions, Poisson Probability distributions, and Normal Probability distributions.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1		The definition and scope of Statistics, concepts of statistical population and sample. Quantitative and qualitative data, primary and secondary sources of data collection, scales of measurement- nominal, ordinal, interval and ratio. Presentation of data: tabular and graphical form including bar diagram, histogram, pie chart	8	2
2		Measures of Central Tendency: Arithmetic mean, median, mode, geometric mean and harmonic mean, quartiles and percentiles. Measures of Dispersion: range, quartile deviation, mean deviation, standard deviation and variance, coefficient of variation and coefficient of skewness		2
3		Bivariate data: Definition, scatter diagram, Karl Pearson's coefficient of correlation Spearman coefficient rank correlation and tied ranks. Simple linear regression, principle of least squares	8	1
4		Definitions of Probability – classical, statistical, and axiomatic, random experiments, sample space and events, laws of addition and multiplication, independent events, conditional Probability and Bayes' theorem	8	3
5		Mathematical expectation, Probability mass function (pmf) and Probability density function (pdf). Binomial Probability distributions, Poisson Probability distributions, and Normal Probability distributions	8	3
Referen	ce Books:			
Samplin	g techniques:	W.G. Cochran, Wiley		
Samplin	g methodolog	ies and applications: P.S.R.S. Rao, Chapman and Hall/CRC 2000		
	1 0	theory and methods: Z. Govindrajalu, Prentice Hall, 1999		
		adhyaya, Prentice Hall of India, 1998.		
	•	reys with applications: P.V.Sukhatme, B.V.Sukhatme, S. Sukhatme and C. Asok, IASRI, Delhi, 1984.		
Samplin	g Techniques:	: Daroga Singh & Chaudhry, F.S New age International		

e-Learning Source:

https://www.youtube.com/watch?v=be9e-Q-jC-0 https://www.youtube.com/watch?v=bQ5_PPRPjG4

https://www.youtube.com/watch?v=jauhoR7w1YM

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO4	PSO5
CO1	2	2	3	2	2	2	2	1	1	2	2
CO2	3	3	2	2	2	3	2	2	2	2	3
CO3	2	2	3	3	2	2	2	2	2	2	3
CO4	2	2	2	3	2	2	1	1	2	2	2
CO5	2	3	2	3	2	2	3	2	2	2	3

Effective from Session: 2018-19							
Course Code	MT303	Title of the Course	Number Theory	L	Т	Р	С
Year	Third	Semester	Fifth	2	1	0	3
Pre-Requisite	10+2 with PCM Co-requisite						
Course Objectives	baggage often associated of pure mathematics wh	l with a more advanced ile engaged in the stud	be exposed to some foundational ideas in number theory d courses. The course provides students an opportunity to ly of number theoretic results. The course is also designed nd analysing mathematics.	devel	op an a	pprecia	tion

	Course Outcomes
CO1	Can be able to demonstrate Cartesian product of sets, Equivalence relation and partition, Fundamental theorem of equivalence of relation,
cor	Equivalence sets.
CO2	Demonstrate knowledge and understanding of topics including, but not limited to divisibility, cardinal numbers, congruence's, quadratic
002	reciprocity, Diophantine equations and cantor's theorem
CO3	Can analyse hypotheses and conclusions of mathematical statements of divisibility, congruence, greatest common divisor, prime, and prime
COS	factorization
CO4	Can apply different techniques of congruence to verify mathematical assertions, including proof by induction, by contrapositive and by
004	contradiction tie and by contradiction
CO5	Can solve systems of Diophantine equations using the Chinese Remainder Theorem & the Euclidean algorithm and Lagrange's theorem

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1		Cartesian product of sets, Equivalence relation and partition, Fundamental theorem of equivalence of relation, Equivalence sets.	8	1
2		Cardinal numbers, power of continuum, cardinal arithmetic, Inequalities in cardinals, Cantor's theorem, Schrodar Berntien Theorem	6	1
3		Division Algorithm, greatest common divisor, least common multiplier, prime number, unique factorisation theorem.	6	2
4		Congruence, Complete residue theorem, Euler's theorem	6	2
5		Linear congruence, Chinese remainder theorem, problem based on Chinese remainder theorem, Lagrange's theorem	6	2
Referen	ce Books:			
J Hunter	: Number T	Theory		
David M	. Burton: E	lementary Number Theory		
Seymour	Lipschutz	: Set theory and related topics		
e-Lear	ning Sourc	20:		
https://ww	ww.youtube	e.com/watch?v=SCvtxjpVQms		
https://w	ww.youtub	e.com/watch?v=-Qtl4nn7R4A		

			Co	ourse Articul	lation Matrix	k: (Mapping	of COs with	POs and PS	Os)		
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO4	PSO5
CO1	3	1	1	1	2	3	3	1	1	2	2
CO2	3	2	1	1	2	1	3	-	-	-	-
CO3	2	2	1	1	2	1	3	-	-	-	-
CO4	3	2	2	1	1	1	1	-	-	-	-
CO5	3	2	1	1	2	1	3	-	-	-	-

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2018-19											
Course Code	MT304	Title of the Course	Statistical Techniques Lab L T P								
Year	Third	Semester	Fifth	0	0	4	2				
Pre-Requisite	10+2 with Mathematics	Co-requisite									
	To make students capable	of describing data in p	ractical situations simultaneously to teach students to mak	e prope	er and e	efficier	it				
Course Objectives	use of the tools which are	use of the tools which are used to describe data. To make students able to fit real time data on various pre-defined probability									
	distributions.										

	Course Outcomes
CO1	After completing Practical 1, students will be able to create visual representation of various types of data.
	After the completion of Practical 2, 3 and 4, students will be able to well describe the central value and variability of data. Students will also
CO2	learn the method of comparison of variability between to or more data sets and to figure out the shape of the given data in terms of skewness
	and Kurtosis.
CO3	After the completion of Practical 5, 6 & 7 students will be able to obtain the degree of relationship between two or more variables for
COS	qualitative and quantitative data both. Students will also be able to find out functional relationship between two or more variables.
CO4	After the successful completion of Practical 8, students will be able to fit real data on a given Binomial distribution.
CO5	After the successful completion of Practical 9, students will be able to fit real data on a given Poisson distribution.
CO6	After the successful completion of Practical 10, students will be able to fit real data on Normal distribution for given mean and variance.

Unit No.	Title of the Unit		Contact Hrs.	Mapped CO
1	Practical 1	Graphical representation (bar, histogram and pie chart) of data.	4	2
2	Practical 2	Problems based on measures of central tendency (Mean, median and mode).	4	2
3	Practical 3	Problems based on measures of dispersion (MD, SD and CV)	4	1
4	Practical 4	Problems based coefficient of skewness.	4	1
5	Practical 5	Karl Pearson correlation coefficient.	4	2
6	Practical 6	4	2	
7	Practical 7	Problems based on Spearman rank correlation with and without ties.	4	2
8	Practical 8	Fitting of binomial distributions for n and p given		3
9	Practical 9	Fitting of Poisson distributions for given value of lambda		3
10	Practical 10	Fitting of Normal distribution for given value of mean and variance	4	3
Refer	ence Books:			
Miller Mood	, Irwin and Mi	I.K. and Dasgupta B. (2002): Fundamentals of statistics, Vol. I & II, 8th Edn. The World Press, Kolka ller, Marylees (2006): John E. Freund's Mathematical Statistics with Applications, (7th Edn.), Pearson , F.A. and Boes, D.C. (2007): Introduction to the Theory of Statistics, 3rd Edn., (Reprint), Tata McC	n Education,	
_	youtu.be/KIBZU			
		com/watch?v=m9a6rg0tNSM		
		com/watch?v=nqPS29IvnHk		
		om/watch?v=JPK0LFsu18g		
		com/watch?v=vvv9DhUrzlY		
		com/watch?v=uq5w2aFwNhE&list=PLLgJVrtHe9RoB9LIZPuwv_zZNmGniGrai		
https:/	//www.youtube.	com/watch?v=5lh1Wr5_1Q0&list=PLGihLBEp_66K6zl4QGMXIf-d1hcoXIQ0a		

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO4	PSO5		
CO1	3	1	2	1	1	1	3	2	2	1	2		
CO2	3	1	2	1	2	1	3	3	3	2	2		
CO3	3	2	1	1	2	1	2	2	2	2	3		
CO4	2	1	1	1	2	1	3	2	2	3	3		
CO5	2	2	1	2	2	1	3	2	2	2	3		
CO6	2	1	1	1	2	1	3	2	2	2	3		
			1. Low Corr	elation · 2. M	oderate Cor	relation: 3. S	ubstantial C	orrelation					

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator Sign & Seal of HoD

Effective from Session: 2018-19										
Course Code	PY301	Title of the Course	Elements of Quantum Mechanics, Atomic and Molecular Spectra			Р	С			
Year	Third	Semester	Fifth	3	1	0	4			
Pre-Requisite	10+2 with Physics	Co-requisite								
Course Objectives		provide working knowledge of the Quantum Mechanics postulates on the physical systems and to introduce some of the basic tems in atomic physics. To gain greater familiarity with quantum mechanics by studying its application to atomic systems.								

	Course Outcomes							
CO1	Would be able to analyze the inadequacies of classical mechanics in atomic domain and provide the understanding of quantum theory of							
COI	light in order to analyze Blackbody Radiation.							
CO2	Provided with the wavefunction of a system, students would be able to normalize it and determine the expectation values.							
CO3	To solve the Schrodinger's equation for time independent problems like free particle, particle in an infinite potential well, square potential							
COS	well, the step potential and potential barrier.							
CO4	It includes an understanding of LS and JJ coupling in order to be able to use appropriate quantum numbers for labelling of energy levels.							
CO5	To analyze the origin of electronic, vibrational and rotational energy levels and undertake simple calculations of energy levels.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Matter Waves	Inadequacies of classical mechanics, black body radiation, theoretical laws of black body radiation, photoelectric phenomenon, Compton effect, Planck's quantum hypothesis, development of quantum mechanics, Bohr's quantization condition, wave particle duality, de- Broglie hypothesis, velocity of de- Broglie waves, phase and group velocities and their relationship for a non-relativistic particle.	08	1
2	Schrodinger Equation I	Heisenberg's uncertainty principle with derivation and its applications, ground state energy of Hydrogen atom & linear harmonic oscillator Basic postulates of quantum mechanics, Schrodinger Equation: time dependent and time independent form, Physical interpretation of the wave function, orthogonality and normalization of wave functions, basic problem related to wave function, probability current density, Ehrenfest theorem.	08	2
3	Schrodinger Equation II	Applications of Schrodinger wave equation: (free particle, a particle in 1-D infinitely deep potential well, a particle in 3-D infinitely deep potential well, 1-D linear harmonic oscillator, one dimensional motion in step potential, rectangular potential barrier, square well potential), expectation values of dynamical quantities, momentum space wave function.	08	3
4	Atomic spectra	Spectra of hydrogen, deuteron and alkali atoms, spectral terms, doublet fine structure, screening constants for alkali spectra for s, p, d, and f states, selection rules, Singlet and triplet fine structure in alkaline earth spectra, L-S and J-J couplings. Weak spectra: continuous X-ray spectrum and its dependence on voltage, Duane and Haunt's law. Characteristics X-rays, Moseley's law, doublet structure and screening parameters in X-ray spectra, X-ray absorption spectra.	08	4
5	Molecular spectra	Discrete set of electronic energies of molecules, quantization of vibrational and rotational energies, determination of internuclear distance, pure rotation and rotation- vibration spectra, Dissociation limit for the ground and other electronic states, transition rules for pure vibration and electronic vibration spectra.	08	5
	nce Books:			
	· •	f Modern Physics (McGraw Hill). to Atomic Physics (D. Van Nostrand Company)		
R. P. I	Feymann, R. B. Leig	hton and M. Sands; "The Feynman Lectures on Physics, Vol. III (B I Publications. Bombay. Delhi, Ca	ilcutta, Mac	lras).
		Quantum Physics of Atoms, 'Molecules, Solids, Nuclei and Particles'' (John Wiley).		
	rning Source:			
•		115/104/115104096/		
		115/102/115102023/		
1-44	// / 1 • / /	115/105/115105100/		

https://nptel.ac.in/courses/115/105/115105100/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	3	2	-	-	1	-	1	3	1	-	-	-		
CO2	3	1	-	-	2	-	3	3	1	-	-	-		
CO3	3	1	-	-	2	-	3	3	1	-	-	-		
CO4	3	1	-	-	2	-	3	3	3	2	-	-		
CO5	3	1	-	-	2	-	3	3	3	2	-	-		

Effective from Session: 2018-19										
Course Code	PY302	Title of the Course	Classical Mechanics, Relativity and Statistical Physics L T P C							
Year	Third	Semester	Fifth	3	1	0	4			
Pre-Requisite	10+2 with Physics	Co-requisite								
Course Objectives	To provide the dynamics of system of particles, motion of rigid body, Lagrangian and Hamiltonian formulation of mechanics									
Course Objectives	and to give the students a thorough understanding of the theory and methods of statistical physics.									

	Course Outcomes
CO1	Students will gain an understanding of the Classical Mechanics and basic theories of Physics like Lagrangian and Hamiltonian Dynamics.
CO2	Students will be able to develop a deep understanding of various phenomena of Special Theory of Relativity and concept of mass-
002	energy equivalence.
CO3	Students will be able to master basic statistical methods and concepts like probability, random variables, expected value, variance, estimators
005	and common probability distributions.
CO4	Students will be able to write the distribution function of various systems and further calculate various thermodynamic potentials.
CO5	Interpretation of Maxwellian distribution. Analysis of statistical mechanical description of Fermi- and Bose- statistics for electron and
05	photon.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Lagrangian and Hamiltonian Dynamics	Constraints: holonomic and non-holonomic, time independent and time dependent, Generalized coordinates, Lagrange equations from D'Alembert's principle, velocity dependent potentials, Variational principle: Technique of the calculus of variation, Hamilton's variational principle, Lagrange equations using Hamilton's principle, Generalized momenta, cyclic coordinates. Definition of Hamiltonian and its physical significance, Hamilton's equations of motion from variational principle.	08	1
2	Special Theory of Relativity	Reference systems, inertial frames, Galilean invariance and conservation laws, propagation of light, Michelson-Morley experiment; search for ether, Postulates for the special theory of relativity, Lorentz transformations, length contraction, time dilation, velocity addition theorem, variation of mass with velocity, mass-energy equivalence, particle with a zero rest mass.	08	2
3	The Statistical Basis of Thermodynamics	Probability and thermodynamic probability, principle of equal a priori probabilities, probability distribution and its narrowing with increase in number of particles.	08	3
4	Some Universal Laws	The μ (mu)- space representation, division of μ (mu)- space into energy sheets and into phase cells of arbitrary size, applications to one-dimensional harmonic oscillator and free particles, Equilibrium before two systems in thermal contact, Probability and entropy, Boltzmann entropy relation, Statistical interpretation of second law of thermodynamics.	08	4
5	Quantum Statistical Mechanics	Maxwellian distribution of speeds in an ideal gas: Distribution of speeds and of velocities, experimental verification, distinction between mean, r.m.s. and most probable speed values. Transition to quantum statistics: 'h' as a natural constant and' its implications, cases of particle in a one-dimensional box and one-dimensional harmonic oscillator, Indistinguishability of particles and its consequences, Bose-Einstein, and Fermi-Dirac distributions, photons in black body chamber, free electrons in a metal, Fermi level and Fermi energy.	08	5
	nce Books:			
		dern Physics" (McGraw-Hill).		
		o Statistical Mechanics" (Macmillan 1981). " (McGraw-Hill 1988).		
		ics" (Wiley Eastern, 1988).		
e-Lean	rning Source:			
https://	//nptel.ac.in/courses/1	15/106/115106123/		
https://	//nptel.ac.in/courses/1	15/105/115105098/		
https://	//nptel.ac.in/courses/1	15/101/115101011/		
https://	//nptel.ac.in/courses/1	04/101/104101125/		

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	1	1	-	1	2	3	1	-	-	-
CO2	3	2	1	1	-	1	2	3	1	-	-	-
CO3	3	1	1	-	-	-	1	3	1	-	-	-
CO4	3	1	-	-	-	2	1	3	3	2	-	-
CO5	3	-	-	-	-	-	2	3	3	2	-	-

Course CodePY303Title of the CourseSolid State, Nuclear and Particle PhysicsLTPYearThirdSemesterFifth210Pre-Requisite10+2 with PhysicsCo-requisiteFifth210The purpose of this undergraduate course is to impart basic and key knowledge of solid state, nuclear and particle physics. using the principal of physics and mathematics to obtain quantitative relations which are very important for higher studies.	Effective from Session: 2018-19										
Pre-Requisite 10+2 with Physics Co-requisite The purpose of this undergraduate course is to impart basic and key knowledge of solid state, nuclear and particle physics.	Course Code	PY303	Title of the Course	Solid State, Nuclear and Particle Physics L T P C							
The purpose of this undergraduate course is to impart basic and key knowledge of solid state, nuclear and particle physics.	Year	Third	Semester	Fifth	2	1	0	3			
	Pre-Requisite	10+2 with Physics	Co-requisite								
successfully completion of course, the students will be able to explore subject into their respective dimensions	Course Objectives	using the principal of	f physics and mathemati	cs to obtain quantitative relations which are very important	for hig						

Course Outcomes

CO1	Students will gain an understanding of crystal structure, diffraction and reciprocal lattice which help in determine the crystal structure of any material.
CO2	Students will gain an understanding of crystal bonding and the vibrations involved in crystal Lattice which help them to understand the concept of vibrational dynamics.
CO3	Students will gain an understanding of materials (metals and semiconductors) and able to find the band gap based on which they define the material type.
CO4	Students will understand the basic properties of nucleus, know about Nuclear Forces and Nuclear Reactions which helps in defining the type of nuclear reaction.
COF	

CO5 Students will gain basic knowledge of particle physics and ability to outline the physical origins of particle physics.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Crystal Structure	Lattice translation vectors and lattice, Symmetry operations, Basis and Crystal structure, Primitive Lattice cell, Two-dimensional lattice types, systems, Number of lattices, Number of Lattices, Index system for crystal planes, Miller indices, Simple crystal structures, NaCl, hcp, diamond. Bragg's law, experimental diffraction method, Laue method, rotating crystal method, powder method.	08	1
2	Crystal Bonding and Lattice Structure	Crystal of inert gases, Van der Walls-London interaction, repulsive interaction, Equilibrium lattice constants, Cohesive energy, compressibility and bulk modulus, ionic crystal, Madelung energy, evaluation of Madelung constant, Covalent crystals, Hydrogen-bonded crystals, Atomic radii. Lattice Heat capacity, Einstein model. Vibrations of monatomic lattice, derivation of dispersion relation, Force constants, Lattice with two atoms per primitive cell.	08	2
3	Band Theory	Hall effect (metals and semiconductors), Origin of band theory, Kronig-Penney model, Number of orbitals in a band, conductor, Semi- conductor and insulators, Effective mass, Concept of holes.	08	3
4	Nuclear Physics	General Properties of Nucleus: Brief survey of general Properties of the Nucleus, Mass defect and binding energy, charges, Size, Spin and Magnetic moment. Nuclear Forces: Saturation phenomena and Exchange forces, Deuteron ground state properties. Nuclear Reactions: Nuclear reactions and their conservation laws, Cross section of nuclear reactions, Theory of fission (Qualitative), Nuclear reactors and Nuclear fusion.	08	4
5	Particle Physics	Basic particle interactions (gravitational, Electromagnetic, week and strong interactions), Basic classification based on rest mass, Spin and half-life, particles and antiparticles, idea of resonances, conservation rules in fundamental interactions, determination of spin and parity of pions, strange particles.	08	5
Referen	ce Books:			
Puri an	nd Babbar, "Solie	d State Physics" (S. Chand).		
H. S. M A. Beis	Mani and G. K. M ser, "Perspective	to Solid State Physics"- Vth Edition (John Wiley & Sons). Mehta, "Introduction to Modern Physics" (Affiliated East-West Press—1989). s of Modern Physics" (McGraw-Hill). , Particle Physics (John Wiley).		
	rning Source:			
https://	/nptel.ac.in/cours	ses/115/104/115104109/		
https://	/nptel.ac.in/cours	ses/115/105/115105099/		
https://	/nptel.ac.in/cours	ses/115/103/115103101/		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	3	1	1	-	2	1	1	3	1	2	2	-	
CO2	3	1	2	-	3	1	1	3	1	2	-	-	
CO3	3	1	2	-	3	1	1	3	1	1	-	-	
CO4	3	1	-	-	2	1	-	3	3	-	2	-	
CO5	3	1	-	-	2	1	-	3	3	-	-	-	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Sessio	n: 2018-19								
Course Code	PY304	Title of the Course	Advance Electricity and Magnetism Lab	L	Т	Р	С		
Year	Third	Semester	Fifth	0	0	2	1		
Pre-Requisite	10+2 with Physics	Co-requisite							
Course Objectives	The purpose of this undergraduate course is to impart practical knowledge/measurements in electricity and magnetism through								
	different experiments.								

	Course Outcomes
CO1	To understand the concept of the charging and discharging of RC and LCR circuits and concept of Lissajous figures using a CRO
CO2	To understand the working and response of PV and Solar cell and determining the fill factor
CO3	To use ballistics galvanometer for various applications.
CO4	To understand the concept of decay of currents in LR and RC circuits and hence estimate the resonancefrequency and quality factor
CO5	Implement bridges for various applications.

Unit No.	Title of the Unit	Content of Unit	Contac t Hrs.	Mapped CO
1	Exp-01	To study the charging and discharging of RC and LCR circuits.	2	1
2	Exp-02	To study of Lissajous figures using a CRO.	2	1
3	Exp-03	To study the spectral response of a solar cell.	2	2
4	Exp-04	To calibrate a ballistic galvanometer with a standard solenoid and then to find out ballistic constant.	2	3
5	Exp-05	Hall Probe Method for measurement of magnetic Field.	2	3
6	Exp-06	Study of decay of currents in LR and RC circuits.	2	4
7	Exp-07	To study the response curve for LCR circuit and hence estimate the resonance frequency and quality factor.	2	4
8	Exp-08	To determine the capacitance of a condenser by Wien's bridge.	2	5
9	Exp-09	To draw the characteristic of a photoelectric cell.	2	2
10	Exp-10	To study Time constant in a LR circuit.	2	4
Referen	ce Books:			•
		R. K. Shukla, New Age International Private Limited; Third edition.		
		s by Harnam Singh and Hemme, S. Chand.		
		cs by CL Arora, S Chand & Company. Kumar P.R.S., Prentice Hall India Learning Private Limited		
		Kunar P.K.S., Prenuce Han mura Learning Private Linnted		
	rning Source:			
https://	/www.explorate	prium.edu/snacks/subject/electricity-and-magnetism		
https://	/ocw.mit.edu/co	purses/physics/8-02-physics-ii-electricity-and-magnetism-spring-2007/experiments/		
http://v	www.rossnaziru	allah.com/BSc/BSc.htm		

nup.//ww	w.1055flazi		bsc/bsc.nui	1									
	Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3			
CO1	3	2	1	-	3	1	2	1	-	1			
CO2	2	1	3	-	2	2	3	2	-	1			
CO3	3	2	2	-	3	3	2	3	-	2			
CO4	2	3	3	-	1	2	3	3	-	3			

3

CO5

3

2

1

_

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

1

2

2

Name & Sign of Program Coordinator	Sign & Seal of HoD

PS04

3

3

3

3

3

1

_

PS05

-

-

-

-

-

Effective From Session: 2018-19										
Course Code	CH308	Title of the Course	Spectroscopic Techniques	L	Т	Р	С			
Year	Third	Semester	Sixth	3	1	0	4			
Pre-Requisite	10+2 with Chemistry	Co-requisite								
Course Objectives	Students able to understand the interaction of electromagnetic radiation with the materials, spectroscopic techniques lil									
Course Objectives	Ultraviolet, FT-IR, Nuc	ear Magnetic Resonand	ce spectroscopy and mass spectrometry.							

	Course Outcomes
CO1	Understanding Wave-like propagation of light, electronic transitions, instrumentation, conjugated systems and transition energies, Woodward – Fieser rules for calculation of wave length.
CO2	Comprehension of absorption in the infrared region, theory of infrared spectroscopy, instrumentation, molecular vibrations, factors affecting vibrational frequencies, characteristic absorptions in common classes of compounds.
CO3	To create basics of NMR spectroscopy, instrumentation, chemical shift, equivalent and nonequivalent protons, spin-spin splitting and vicinal coupling.
CO4	Able to evaluate the NMR spectra of some representative compounds: Hydrocarbons, Aldehydes, Ketones, Acids and Alcohols, Applications of NMR spectroscopy.
CO5	Analyze the theory, instrumentation, important useful terms in mass spectrometry and atomic absorption spectrophotometry; molecular ion peak, metastable peak, fragmentation patterns of various functional groups (alkanes, alkenes, alkynes, alcohols, ketones, aldehydes), Mclafferty rearrangements.

Unit No.	Title of t	he Unit				Content					Contact Hrs.	Mapped CO
1	UV spectros	scopy	organic r systems compour	nolecules a and transiti ids, conjug	llowed and on energie ated dienes	forbidden s, Woodw and polye	transitions ard – Fiese nes.	, instrumer er rules; un	netic radia ntation, con saturated c	jugated	08	01
2	IR spectroso	сору	spectroso vibration compour	al frequenties, charact	unds.	08	02					
3	NMR spect	roscopy	equivaler Interpret	bounds, characteristic vibrational frequencies of some organic compounds. duction, theory of NMR spectroscopy, instrumentation, chemical shift, ralent and nonequivalent protons, spin-spin splitting, vicinal coupling,, 08 03 oretation of NMR spectra of some representative compounds.								
4	Mass spectr	s spectroscopy alkenes, alcohols, ether, phenols and amines, ketones, aldehydes, esters, acids, anhydrides), molecular ion peak, metastable peak, Mclafferty rearrangements, Nitrogen rule.										
5		nic absorption Introduction, Principle, Instrumentation, Sample preparation, Internal standard on the standard addition, calibration and applications of AAS.										
Referen	ce Books:											
Introduc	tion to spectro	scopy: Pavia	, Lampman	& Kriz, 3rd	Ed, Books/c	ole.						
Spectros	copic methods	in organic c	hemistry: H	. Williams a	nd Ian flemi	inig, V Editi	on Tata Mc	Grawhills				
Ű	spectroscopy:		A -	U U	•							
	entals of Analy									ege publica	tions.	
	es and practice						n, Blackwell	publication.				
	al chemistry, C											
	ncepts of analy	tical chemi	stry, S. M. K	opper, New	Age Interna	ational Publ	ishers.					
	ing Source:											
	ww.youtube.co		•	ç	1	1	<u> </u>				. 1	
	ww.infocobuild rippslabs.com/					pplicationO	ISpectroscop	oiciviethods-	III I - Madras/I	ecture-25.	ntml	
<u> </u>	ptel.ac.in/conte		<u> </u>	<u>.</u>								
nups.//n	stel.ac.m/conte	in storage2/		^	<u> </u>	atrix: (Ma	pping of CC)s with POs	and PSOs))		
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	2	2	1	3	3	3	2	-	2	-
CO2	3	2	2	2	1	3	3	3	2	-	2	-
CO3	3	2	2	2	1	3	3	3	2	-	2	-
CO4	3	2	2	2	1	3	3	3	2	-	2	-
CO5	3	2	2	2	1	3	3	3	2	-	2	-
		1	1- Low Cor	relation; 2-	Moderate	Correlation	1: 3- Substa	ntial Corre	lation	1	1	1

Effective From Session: 2018-19									
Course Code	CH309	Title of the Course	Chemical Process Industry	L	Т	Р	С		
Year	Third	Semester	Sixth	3	1	0	4		
Pre-Requisite	10+2 with Chemistry	Co-requisite							
Course Objectives	The main objective of the	his course is to study th	e composition, preparation, properties and uses of ammonia	a, nitrio	c acid, p	phospho	orus		
Course Objectives	chemical, glass, cement	ceramics and refractor	actories and their related toxic hazards on the health of consumer.						

	Course Outcomes								
CO1	valuate different preparation processes for the manufacture of ammonia, nitric acid, ammonium nitrate and ammonium sulphate and their lated quality control, hazards, safety and effluent management.								
CO2	Evaluate different manufacturing methods of caustic soda and phosphorus chemicals and their properties and uses.								
CO3	Understand the composition of glass and their types, properties and uses.								
CO4	Analyze the composition, types, properties and preparation of cement and its setting time.								
CO5	Understand the classification, properties and uses of ceramics and refractories and their respective characteristics.								

Unit No.	Title	of the Unit					Content	of Unit					ntact Irs.	Mapped CO
1		etic nitrogen roducts	refe Haz	rence to; or ards and satisfies the second s	consumption fety and E	on Pattern ffluent mai	, Raw ma nagement.	terials, Pr	oduction j	process, Q	nufacture v Juality cont	trol,	08	01
2		ro – alkali rial product	pho	Caustic soda Chlorine. Phosphorus chemicals; Phosphorus, phosphoric acid, ammoniu hosphate, superphosphate, triple superphosphate. Lime, gypsum, Silicon, calciu arbide.									08	02
3		Glass		ntroduction, Classification and General Properties of Glass , Characteristics, raw Material Chemical Reactions, Methods of Manufacture and Uses.								als,	08	03
4	C	Cement	man Test	ufacture o ting & Use	f Cement s of cemen	by wet & t.	Dry proc	ess, React	ion in the	Kiln, sett	w Materi ing of cem	ent,	08	04
5		amics and ractories	Introduction, Types of ceramics materials, properties and applications. Refractories, classification of refractories, characteristics of refractories materials, properties of 08										08	05
Referen	Reference Books:													
Shreve R.N. Brink. J.A., Chemical Process Industries, International student edition, Pubs: McGraw Hill Book Co. New York, 1960.														
Groggin	ns P.M., Ur	nit Process i	in Organic	c Synthesis	, 5th editio	n, Internat	ional stude	nt edition,	Pubs: Mc	Graw-Hill	Book Co., I	New York	, 1998.	
Dryden'	's outlines	of Chemica	l Technol	logy, edited	and revis	ed by Gopa	ala Rao M.	and Marsl	nall S, Pub	s: East-We	st Press, No	ew Delhi,	2004.	
Industria	al Chemist	ry B.K.Sha	rma, goel	publishing	house.									
Chemica	al process	industries N	NR Nerris	s shreve.										
Chemica	al process	principales	: part 1 &	II – O.A /]	Hougen, K	.M Watsor	n RA Raga	tz (CBS)						
e-Learn	ning Sourc	e:												
https://e	ncyclopedi	a2.thefreed	ictionary.c	com/chemi	cal+proces	s+industry								
https://w	www.youtu	be.com/wat	ch?v=RjZ	JjneJ5fk										
https://w	www.chemi	icalprocessi	ng.com/											
https://w	www.britan	nica.com/so	cience/pho	sphorus-ch	emical-ele	ment								
				Cou	rse Articu	lation Ma	trix: (Maj	oping of C	Os with P	Os and P	SOs)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	2	3	2	2	3	2	3	2	-	1	1	-	-
CO2	3	2	3	2	1	3	2	3	2	-	1	1	-	-
CO3	3	2	3	2	1	3	2	3	2	-	2	1	-	-
CO4	3	2	3	2	1	3	2	3	2	-	1	1	-	-
CO5	3	2	3	2	1	3	2	2	2	-	1	1	-	-

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:	2018-19		•				
Course Code	CH317	Title of the Course	Chemistry of Polymers	L	Т	Р	С
Year	Third	Semester	Sixth	3	1	0	4
Pre-Requisite	10+2 with Chemistry	Co-requisite					
Course Objectives			echanism of polymer preparation, their processing cess of vinyl polymers, polyamides, polyesters, syn				

	Course Outcomes								
CO1	Student will be able to evaluate the different mechanisms of polymer preparation and their classification.								
CO2	Student will be able explain various polymer reactions such as hydrolysis, acidolysis, crosslinking etc.								
CO3	Understand the colligative properties of Polymers and evaluate the identification techniques such as NMR and FTIR of Polymers.								
CO4	Understand the degradation and its types.								
CO5	Understand the preparation process of vinyl polymers, polyamide, polyesters and rubbers,								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Polymer introduction	Basic concepts of polymer science, Classification of polymers, Average molecular weight and Molecular weight distribution. Polymerization: Mechanism and kinetics of: Free radical addition polymerization, Ionic addition polymerization, Coordination polymerization, Step growth polymerization.	08	01
2	Polymer reactions	Introduction; types- hydrolysis, acidolysis, addition, substitution, halogenation, hydrogenation, crosslinking, curing, (brief mechanism and usefulness of each reaction to be highlighted with examples).	08	02
3	Structure and properties	Thermal transitions, Crystallinity, Molecular weight characterization, Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR) techniques.	08	03
4	Polymer degradation	Introduction, Types of degradation- thermal degradation, mechanical degradation, degradation by ultrasonic waves, photo degradation, degradation by high-energy radiation, oxidative degradation and hydrolytic degradation and biodegradation.	08	04
5	Synthesis, properties and applications	Polystyrene, Polyacrylonitrile, Polymethacrylate, Polymethylmethacrylate, Polyethene, Polybutadiene, Polyvinylidene, Polycarbonates, Polyesters, Polyurethanes, Phenolic polyesters, Polyamides, Polysulphones.	08	05
Referen	ce Books:			
Principle	es of polymer chemistry	: A Ravve, 2nd Edition, Kluwer Academic publications		

Polymer Science and technology: Joll. R. Fried, Prentice - Hall.

Principles of polymer systems: F. Rodriguez, Claude Cohen, C.K. Ober, L.A. Archer, Vth Edition, Taylor & Francis

Introduction to polymers: R.J. Young and P.A. Lovell, 2nd Edition, Netron Thornes publications

Polymer chemistry - an introduction, Malcolm D. Stevens, Oxford University press.

e-Learning Source:

https://www.youtube.com/watch?v=kMHYNuyKQ2Q&list=PLBAcrca02tZdHmbDFvnOA6ZYTJPnF5sMe

https://www.youtube.com/watch?v=Gzin6mP-tUM&list=PLLy_2iUCG87CbDZMn4eP_XT09XTJOVooJ

https://www.youtube.com/watch?v=68fF7Tnl0wE

https://www.youtube.com/watch?v=YZf5q-ICf8Y

				Course Art	iculation M	latrix: (Maj	oping of CO	s with POs	and PSOs)			
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	-	-	-	-	3	3	3	3	3	3	3
CO2	3	-	-	-	-	3	3	3	3	3	3	3
CO3	3	-	1	-	-	3	3	3	3	3	3	3
CO4	3	-	1	-	-	3	3	3	3	3	3	3
CO5	3	-	1	-	-	3	3	3	3	3	3	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective From Session: 2018-19										
Course Code	CH310	Title of the Course	Fundamental Of Food ChemistryLTP							
Year	Third	Semester	Sixth 3 1 0 4							
Pre-Requisite	10+2 with Chemistry	Co-requisite	-							
Course Objectives	The course focuses on providing knowledge of food constituents, food additives and food processing techniques. The study of food									
Course Objectives	laws and standards app	laws and standards appraise students about quality and safety assurance and food related hazards.								

	Course Outcomes							
CO1	Understanding of Indian food law and food standards, value of quality assurance and safety assurance							
CO2	Comprehension of chemical structure, properties and argue importance of food components, including carbohydrates, protein, lipids, vitamins and minerals.							
CO3	Describe the principles in food processing techniques and differentiate food preservation methods like heat preservation and cold preservation, food packaging							
CO4	Able to explain different types of food additives with examples and judge its value in real life.							
CO5	Analyze the importance of food safety and food related physical, chemical and biological hazards							

CO5 Analyze the importance of food safety and food related physical, chemical and biological hazards.

Unit No.	Content of Unit							
1	8	1						
2	8	2						
3	2 their nutritive aspects 3 Food processing techniques Food processing, Cold preservation and processing Food dehydration, Food concentration & food packaging.							
4	Preservatives, Antioxidants, Chelating agents, Surface active agents, Stabilizing and							
5	Food safety, risks and hazards and storage on microbial safety, Chemical hazards associated with foods, Prevention methods from food born disease.							
Referen	ce Books:							
		pringer – Verlag Bertin Heiderberg, 2nd Edition, 1999						
		n Eastwood, Chapman and Hall, London, I Edition, 1997.						
		ents, T.P. Coultate, Royal Soc. Chemistry, 4th Edition, 2002.						
		Davidson P. Michae, Food Science and Technology series (35), Morcel Dekker, Inc, 1990.						
		ker, Delmar Learning, U.S.A, I Edition, 2003.						
		ri Smolin L.A., Saunders College Publishing, 3rd Edition.						
	uing Source:							
	http://www.basicknowledge101.com/pdf/Food%20chemistry.pdf							
	ourses.foodcrumbles.com/cou							
	ww.cabdirect.org/cabdirect/al							
https://b	yjus.com/chemistry/food-cher	nistry/						

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	-	1	1	3	3	3	3	-	3	-
CO2	3	2	-	2	1	2	2	3	2	-	2	-
CO3	3	3	-	1	1	3	2	3	3	-	3	-
CO4	3	3	-	1	1	3	3	3	3	-	3	-
CO5	3	2	-	2	1	2	3	3	3	-	2	-

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2018-19										
Course Code	CH318	Title of the Course	UG Chemistry Project	L	Т	Р	С			
Year	Third	Semester	Sixth	0	0	8	4			
Pre-Requisite	10+2 with Chemistry	-2 with Chemistry Co-requisite								
Course Objectives	The main objective is to e	enhance the technical skil	ls and to provide students industrial exposure.							

	Course Outcomes						
CO1	Hands on training						
CO2	Integrate class room theory with laboratory scale practice.						
CO3	Understanding professional ethics of industry and code of conduct.						
CO4	Increase the students' knowledge and understanding of chemical science						
CO5	Ensure that students receive essential training in laboratory safety procedures						

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	
CO	101	102	105	101	105	100	10/	1501	1502	1505	1501	1505	
CO1	3	-	-	-	2	3	3	3	3	3	3	3	
CO2	3	-	-	-	2	3	3	3	3	3	3	3	
CO3	3	-	-	-	1	3	3	3	3	3	3	3	
CO4	3	-	-	-	1	3	3	3	3	3	3	3	
CO5	3	1	-	-	3	3	3	3	3	3	3	3	

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Effective from Sess	Effective from Session: 2018-19									
Course Code	MT307	Title of the Course	Basic Mathematical Modeling	L	Т	Р	С			
Year	Third	Semester Sixth 3 1								
Pre-Requisite	10+2 with Mathematics	Co-requisite								
Course Objectives		1	mathematics especially in calculus which is necessary ad will serve as basic tools for specialized studies in science	•		ng ther	n into			

	Course Outcomes
CO1	Assess and articulate what types of modeling techniques are appropriate for a given physical system.
CO2	Construct a Mathematical model of a given physical system and analyze it.
CO3	Make predictions of the behavior of a given physical system based on the analysis of its Mathematical Model.
CO4	Demonstrate understanding of powerful mathematical tools such as calculus of several variables, differential equations and elementary dynamical systems theory
CO5	Recognize the power of mathematical modeling and analysis and be able to apply their understanding to their further studies.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1		Simple situations requiring mathematical modeling, techniques of mathematical modeling, classifications of mathematical modeling, characteristics of mathematical models. Mathematical modeling through geometry, algebra, trigonometry and calculus. Limitations of methodical modeling.	8	2
2		Mathematical modeling through ordinary differential equations first order linear growth and decay models, compartment models, mathematical modeling in dynamics through first order ODE. Mathematics modeling through Systems of ODE of first order	8	2
3		Mathematical modeling in population dynamics, mathematical modeling of epidemic, Compartment model through system of ODE. Mathematical Modeling of circular motion, Planetary motions and motions of satellite.	8	3
4		Mathematics modeling in economics, in medicine, Arms race, Battles, international trade in terms of system of ODE and dynamic through ordinary differential equations. Mathematical Modeling through ODE of second order.	8	3
5		Mathematical modeling through difference equations: The need, basic theory, modeling in Economics and finance, modeling in population dynamics and Genetics, Modeling in probability theory. Examples of Mathematical modeling through difference equations	8	3
Referen	ce Books:			
Robert	G. Bartle and	Donald R. Sherbert : Introduction to Real Analysis, Wiley Student Edition.		
S. C . N	Malik and S. A	Arora : Mathematical analysis, Wiley Eastern Ltd.		

R. V. Churchill and J.W. Brown: Complex Variable & Applications, McGrow Hill, International Book Company, London Goyal and Gupta : Function of a Complex Variable, Pragati Prakashan.

e-Learning Source:

https://www.youtube.com/watch?v=-uCwgZUz510

https://nptel.ac.in/courses/111107113/

https://study.com/academy/lesson/types-of-mathematical-models.html

https://www.frontiersin.org/articles/10.3389/fgene.2015.00354/fullpdf

https://www.youtube.com/watch?v=jV4Hlh8gHLs

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO-PSO											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO4	PSO5
CO1	3	2	2	1	1	3	1	1	1	2	2
CO2	2	2	2	1	1	2	2	2	1	1	2
CO3	3	2	3	1	1	2	1	2	2	1	2
CO4	3	2	3	1	1	3	2	2	2	1	2
CO5	3	2	1	1	1	2	1	2	2	3	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Effective from Sessi	Effective from Session: 2018-19							
Course Code	MT308	Title of the Course	Linear Programming	L	Т	Р	С	
Year	Third	Semester	Sixth	3	1	0	4	
Pre-Requisite	10+2 with Mathematics Co-requisite							
Course Objectives		tudents able for Post	ramming, Integer Linear Programming, Multi-objectiv optimal analysis and optimal decision making problem. ramming Optimization.					

	Course Outcomes
CO1	Formulation of real life problems in the form of linear programming problem and various methods to solve the formulated LPP.
CO2	Can obtain the problem when changing the parameters of the problem in later stages.
CO3	Understanding pure and mixed integer programming problems with different methods of solving those problems.
CO4	Understand Multi-objective and Stochastic programming problem and various methods to make them deterministic in order to solve efficiently.
CO5	Learn decision making problems under various environments explicitly the theory of games.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1		Formulation of linear programming problem, simplex algorithm, Primal Dual relationship, Economical interpretation of the dual, Dual Simplex method. Revised simplex method. Bounded variable simplex method	6	2
2		Sensitivity Analysis: Change in values of objective function coefficient, Change in right hand side values, Change in coefficient of coefficient, Adding a new product and adding a constraint.	6	2
3		Integer programming formulation, all integers and mixed integer programming problems, Gomory's cutting plane algorithm, Branch and bound algorithm. Knapsack problem.	6	3
4		tochastic programming models, Chance constraints optimization, two stage problems. Goal Programming methods and applications.	6	3
5		Decision Theory: Introduction, Elements of decision problem, Types of decision making environment, Decision tree. Game Theory: Basic definitions, Two-person Zero-sum games, Pure and mixed strategy, Principle of Dominance, Graphical method, Solution of games by linear programming method.	6	3
Referen	ce Books:			
Mokhtar	r S. Bazara, J	ohn J. Jarvis "Linear Programming and Network Flows" Fourth Edition. WILEY A John Wiley & Sons, Inc.	., Publication	1.
H.A. TA	AHA "Operat	ions Research- An Introduction" Pearson.		
	<u>.</u>	a and A. Manmohan, "Operations Research", S. Chand.		
		n, "Introduction to Operations Research", McGraw Hill Company.		
David K	L.J. Mtetwa,	"Linear Programming" Paradise publishers, US.		
e-Lea	rning Source	2:		
https://w	vww.youtube	e.com/watch?v=TwAvQJAM9Hk		
https://w	www.youtube	e.com/watch?v=M8POtpPtQZc		
https://w	www.youtube	e.com/watch?v=KLHWtBpPbEc		
https://w	vww.youtube	e.com/watch?v=o-N0jFUpdWo		
https://w	vww.youtube	e.com/watch?v=56-iiZEjqnU		
https://w	vww.youtube	e.com/watch?v=LAC212ZwBB4		
•		e.com/watch?v=gkm6WljmbOk		
•	•	e.com/watch?v=EyVYAngxkPA		
	•	com/watch?v=hibV5YbZvBw		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO4	PSO5
CO1	3	2	1	2	2	1	3	1	1	1	2
CO2	3	1	1	1	2	1	3	2	2	3	2
CO3	3	1	1	2	2	1	3	2	2	2	2
CO4	3	2	3	1	1	1	3	2	1	1	2
CO5	3	2	1	2	2	1	3	2	3	3	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Effective from Session: 2018-19										
Course Code	MT305	Title of the Course	Statics & Dynamics	L	Т	Р	С			
Year	Third	Semester	Fifth	3	1	0	4			
Pre-Requisite	10+2 with Mathematics	Co-requisite	Co-requisite							
Course Objectives	Students will be able to lea	arn about equilibrium an	art basic and key knowledge of motion of body on d bodies acted upon by forces under different com- pre subject into their respective dimensions.							

	Course Outcomes
CO1	Students will be able to understand Velocity and acceleration along radial and transverse directions and along Tangential and normal directions. They will also study Simple harmonic motion in various situations and about Motion under other laws of forces, Earth attraction, Elastic strings.
CO2	Students will gain an understanding of Motion of bodies in resisting medium, Constrained motion (circular and cycloidal only).
CO3	Students will gain an understanding of motion of particle on smooth and rough plane curves, Rocket motion and also study about Central orbits and Kepler's law, Motion of a particle in three dimensions.
CO4	Students will create the own understanding of Common catenary, Centre of gravity and get knowledge of Stable and unstable equilibrium, Virtual work.
CO5	Students will learn about Forces in three dimensions, Poinsot's central axis, Wrenches, Null line and null plane.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO			
INO.	Unit	Velocity and acceleration along radial and transverse directions, and along	Hrs.				
1		Tangential and normal directions, Simple harmonic motion, Motion under other laws of forces, Earth attraction, Elastic strings	8	2			
2		Motion in resisting medium, Constrained motion (circular and cycloidal only).	8	2			
3		Motion on smooth and rough plane curves, Rocket motion, Central orbits and Kepler's law, Motion of a particle in three dimensions.	8	1			
4		Common catenary, Centre of gravity, Stable and unstable equilibrium, Virtual work.	8	3			
5		Forces in three dimensions, Poinsot's central axis, Wrenches, Null line and null plane.	8	3			
Refer	ence Books:						
R.S. Ve	rma - A Text	Book on Statics., Pothishala Pvt. Ltd., Allahabad					
S.L. Lo	ney - An Elen	nentary Treatise on the Dynamics of a Particle and of Rigid Bodies, Kalyani Publishers, New Delhi.					
J.L. Syr	ige & B.A. Gi	iffith - Principles of Mechanics, Tata McGraw-Hill, 1959.					
M.A. Pa	athan: Statics						
Jhonsor	and Beer: Ve	ector Mechanics for Engineers					
Zafar A	hsan: Lecture	s Notes on Mechanics					
e-Lea	rning Source						
1. http	s://nptel.ac.in	/courses/112/106/112106180/					
2. http	s://www.math	ncity.org/bsc/notes_of_mechanics/tariq_mahmood_qadri					
3. http	3. https://www.fisica.net/mecanicaclassica/introduction_to_statics_and_dynamics_by_rudra_pratap.pdf						
4. http	s://www.msu	niv.ac.in/Download/Pdf/2c2167ab44cf4fc					

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO4	PSO5
CO1	3	2	2	1	1	1	2	2	2	1	2
CO2	3	2	2	1	1	1	2	3	3	2	2
CO3	3	2	2	1	1	1	2	2	2	2	3
CO4	3	2	2	1	1	1	2	2	2	3	3
CO5	3	2	2	1	1	1	2	2	2	3	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2018-19										
Course Code	MT306	Title of the Course	f the Course Analysis L T P							
Year	Third	Semester	Sixth	3	1	0	4			
Pre-Requisite	10+2 with Mathematics	Co-requisite								
Course Objectives	analytic concepts of limit, 2. This course is aimed to	convergence, integration provide an introduction t	thematics students. The aim of this course is to introdu- and differentiation. o the theories for functions of a complex variable. The ic functions are then introduced.			p basio	>			

	Course Outcomes						
CO1	Describe fundamental properties of the real numbers that lead to the formal development of real analysis.						
CO2	Demonstrate an understanding of limits and how they are used in sequences, series, differentiation and integration;						
CO3	Understand and be able to use notions of convergence involving sequences of functions, including the difference between point wise and uniform convergence. Apply the Weierstrass M-test and the uniform convergence theorem for integrals to examples.						
CO4	Demonstrate understanding of the basic concepts underlying complex analysis.						
CO5	Find Laurent series about isolated singularities, and determine residues and use the residue theorem to compute several kinds of real integrals.						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO			
1		Find Laurent series about isolated singularities, and determine residues and use the residue theorem to compute several kinds of real integrals.	8	2			
2		Sequence of real numbers, Subsequence, Bounded and monotonic sequences, Convergent sequences, Cauchy's theorems on limit, Cauchy sequence, Cauchy general principle of convergence.	8	2			
3		Uniform convergence of sequences and series of functions, Weierstrass - M test, Abel's and irichlet's test, Boundedness and intermediate value properties of continous functions, Uniform continuity, Meaning of sign of derivative, Darboux theorem	8	3			
4		Functions of Complex variables, Limit, Continuity and differentiability, CR – equations, Analytic functions, Harmonic functions, Construction of analytic function.	8	3			
5		Cauchy fundamental theorem, Cauchy integral formula, Derivatives of analytic functions, Morera's and Lioville's theorem, Zeros of analytic function, Singularities, Residues and theorem of Residue.	8	3			
Reference Books:							
Robert	t G. Bartle and	Donald R. Sherbert : Introduction to Real Analysis, Wiley Student Edition.					

S. C. Malik and S. Arora : Mathematical analysis, Wiley Eastern Ltd. R. V. Churchill and J.W. Brown: Complex Variable & Applications, McGrow Hill, International Book Company, London Goyal and Gupta : Function of a Complex Variable, Pragati Prakashan.

e-Learning Source:

https://swayam.gov.in/nd1_noc20_ma03/preview

https://www.youtube.com/watch?v=gJ1pYz1k0qM

https://www.youtube.com/watch?v=t9xW7UaZwZ0

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO4	PSO5
CO1	3	1	1	-	2	1	1	1	1	2	2
CO2	3	1	2	-	3	1	1	2	2	1	2
CO3	3	1	2	-	3	1	1	1	2	1	2
CO4	3	1	1	-	2	1	1	2	2	2	3
CO5	3	1	1	-	2	1	1	2	2	3	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Effective from Session: 2018-19									
Course Code	PY305	Title of the Course	Applied Electronics	L	Т	Р	С		
Year	Third	Semester	Fifth	3	1	0	4		
Pre-Requisite	10+2 with Physics	Co-requisite							
The purpose of this undergraduate course is to impart basic and key knowledge of electronics and its applications. By using the									
Course Objectives	principles of modern physics and mathematics to obtain quantitative relations which are very important for higher studies. After								
	successfully completion of course, the students will be able to explore subject into their respective dimensions.								

	Course Outcomes
CO1	Students will gain an understanding of modern physics and characterization of semiconductor based electronic devices.
CO2	Students will be able to realize the important concepts of advance electronics related to bipolar junction transistors.
CO3	Students will gain an understanding of advanced concepts of transistors and related to biasing circuits for small- and large-scale signal conditioning, power amplifications and effect of external factors in transistor operations.
CO4	Students will learn about the high switching semiconducting devices like FETs and MOSFETs for designing power supplies for industrial and commercial applications.
CO5	Students will learn about the Power electronic devices like the UJT, TRIAC, etc. and designing Integrated Circuits for fabrication of high vield monolithic ICs.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Semiconductor and p-n junction diode	Diffusion of minority carriers in semiconductor, work function in metals and semiconductors Junctions between metal and semiconductors, Semiconductor and p.n. Junction, Depletion layer, Junction Potential Width of depletion layer, Field and Capacitance of depletion layer, Forward A.C. and D.C. resistance of junction, Reverse Breakdown, Zener and Avalanche diodes, Tunnel diodes, Point contact diode, their importance at High frequencies, LED photodiodes, Effect of temperature on Junction diode Thermistors.	08	1
2	Transistor-I	Transistor parameters, base width modulation, transit time and life-time of minority carriers, Base- Emitter resistance Collector conductance, Base spreading resistance, Diffusion capacitance, Reverse feedback ratio, Equivalent circuit for transistors, Basic model, hybrid model and Y parameter equivalent circuit, Input and output impedances.	08	2
3	Transistor-II	Current and Voltage gain, Biasing formulae for transistors, Base bias, emitter bias and mixed type bias and mixed type biasing for small and large signal operation, Transistor circuit application at law frequencies, their AC and DC equivalent for three different modes of operation, Large signal operation of transistors, Transistor Power amplifiers, Class A and B operation, Maximum power output Effect of temperature, heat sinks, thermal resistance Distortion in amplifiers, cascading of stages, Frequency response, Negative and positive feedback in transistor amplifiers.	08	3
4	Field effect transistors and Power Supplies	Field effect transistors and their characteristics, biasing of FET, use in preamplifiers, MOSFET and their simple uses. Electronically regulated low and high voltage power supplies, Inverters for battery operated equipments. Phototransistors, Silicon Controlled rectifiers.	08	4
5	Power Electronics and Integrated Circuits	Triac Construction, Operation and Characteristics, Unijunction Transistors (UJT), its characteristics, IC-classification, Making monolithic ICs, IC-fabrication of components on monolithic IC, IC packings, IC symbols.	08	5
Referen	nce Books:			
		Electronic Devices", UK Edition (Prentice-Hall of India. New Delhi, 1986).		
		evices, Circuits and Applications" (Prentice-Hall, New Jersey, USA. 1988).		
		damentals and Applications" IInd Edition (Prentice-Hall of India. New Delhi, 1986). Iicroelectronics", International. Edition (McGraw-Hill Book Company, New York, 1988).		
	rning Source:			
	//nptel.ac.in/courses/117	7/107/117107095/		

https://nptel.ac.in/courses/108/101/108101091/

https://nptel.ac.in/courses/117/103/117103063/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	1	2	1	2	3	2	1	2	2	
CO2	1	3	2		3	1	2	1	2	3	3	
CO3	3	2	1	1	2	2	3	3	3	2	2	
CO4	2	2	3		1	1	2	1	2	2	3	
CO5	1	3	1	2	3	2	1	2	1	2	1	

Effective from Session: 2018-19								
Course Code	PY307	Title of the Course	Citle of the Course Mathematical Methods in Physics (Elective 1)L				С	
Year	Third	Semester	Fifth	3	1	0	4	
Pre-Requisite	10+2 with Physics	0+2 with Physics Co-requisite						
Course Objectives	5	The main objective of this course is to familiarize students with a range of mathematical methods that are essential for solving advanced problems in theoretical physics.						

	Course Outcomes
CO1	Students will be able to apply the methods of vector analysis. These methods provide a natural aid to the understanding of geometry and some physical concepts. They are also a fundamental tool in many theories of Applied Physics.
CO2	Students will be able to use computational techniques and algebraic skills essential for the study of systems of linear equations, matrix algebra, vector spaces, eigenvalues and eigenvectors, orthogonality, and diagonalization. (Computational and Algebraic Skills).
CO3	Students will understand the convergence and divergence of infinite series and to evaluate successive differentiation and determine the area and volume by applying the techniques of double and triple integrals.
CO4	Students will express the concept of probability and its features, explain the concept of a random variable and the probability distributions.
CO5	Students will use the gamma function, beta function and special functions to: evaluate different types of integral calculus problems and Fourier series to solve differential equations.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Vector Calculus and Curvilinear Coordinates	Vector Calculus and Curvilinear Coordinates Differential vector operators: Gradient, divergence and curl. Gauss's theorem, Green's theorem, Stoke's theorem, Some simple examples based on these theorems, orthogonal curvilinear coordinates, cylindrical and spherical polar coordinates, divergence, gradient, curl and Laplacian in these coordinates.	08	1
2	Vector Spaces and Linear Algebra	Determinants for linear algebraic equations, Laplace development, Cramer's rule, antisymmetry, Gauss elimination. Matrices–basic definition, classification and operations, orthogonal matrices, Hermitian matrices, unitary matrices, Rank of matrices, eigenvalues and eigenvectors.	08	2
3	Infinite Series and Multiple Integrals	Infinite Series: Fundamental concepts, convergence tests, alternating series, algebra of series, power series, Taylor series. Multiple Integrals: Double and triple integrals, application of multiple integrals, change of variables in integrals, general properties of Jacobians, surface and volume integrals.	08	3
4	Statistics and Probability	Statistics and Probability: Statistical distributions, second moments and standard deviations, definition of probability, fundamental laws of probability, discrete probability distributions, combinations and permutations, continuous distributions: expectation, moments and standard deviation, Binomial, Poisson and Gaussian distributions.	08	4
5	Special Functions	Beta and gamma functions: problems, relation between beta and gamma functions, Bessel's differential equations, Legendre's differential equations, Hermite's differential equations, Laguerre's differential equations (Qualitative), series solutions, Dirac delta functions and its properties.	08	5
	nce Books:			
		ysicists: G. Arfken and H. J. Weber (Academic Press, San Diego) 7th edition, 2012.		
Mathe	matical Methods in the	Physical Sciences, M.L. Boas (Wiley) 2002.		
		ineers and Physicists, L. A. Pipes & L. R. Harvill (McGraw- Hill), 1971. ysics and Engineering, K. F. Riley, M.P. Hobson and S.J. Bence (Cambridge University Press), 19	98	
	rning Source:	ysies and Engineering, I. T. Hiey, With Housen and Sw. Denee (Camoridge Oniversity (1985), 17	<i>y</i> 0.	
	0	at/Physics/Mathematical Physics Pools html		
nups://	/www.iieebookcelltre.ii	et/Physics/Mathematical-Physics-Books.html		

https://nptel.ac.in/courses/115106086/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	1	1	-	2	1	2	3	2	1	1	-
CO2	3	1	2	1	3		3	2	3	3	1	-
CO3	2	3	2		3	2	2	3	1	2	2	-
CO4	3	-	1	1	2		1	2	2	3	1	-
CO5	1	2	1	2	2	1		3	2	2	1	-

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Effective from Session: 2018-19									
Course Code	PY308	Title of the Course	tle of the Course Advanced Solid-State Physics (Elective 2) L T				С		
Year	Third	Semester Fifth 3					4		
Pre-Requisite	10+2 with Physics	vsics Co-requisite							
Course Objectives	Physics and provide	This course aims to extend the material covered in the basic courses in Solid State Physics, Electronic Materials and Device Physics and provide a broader and deeper understanding of the physics of today's semiconductor devices. This includes discussions on the materials properties and optical properties underlying fundamental devices.							

	Course Outcomes
CO1	Students will gain an understanding of the vibrations involved in Lattice which help them to understand the concept of phonon and
	vibrational dynamics.
CO2	Students will gain knowledge of semiconductor and their benefits over conductors and trying to improve upon these qualities.
CO3	Students will gain an understanding of dielectric material, their properties and use of dielectric material in capacitor. It will help in
	understanding about Capacitors, as it is one of the most basic electrical components in any electronic circuit.
CO4	Students will gain an understanding of different kinds of magnetic material and it uses.
CO5	Students will be able to evaluate the optical properties of the material and will create own understanding approaches to the finding them.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Elementary Lattice Dynamics: Lattice vibrations and phonons. Linear monoatomic and diatomic chains, Acoustical and optical phonons, Qualitative description of the phonon spectrum in solids, Dulong and Petit's law, Einstein and Debye theories of specific heat of solids, T ³ law.							
2	Semiconductor Physics	Classifying materials as semiconductors, Chemical bonds in semiconductors, Mechanism of current flow, Forbidden, valence and conduction bands, Intrinsic and extrinsic semiconductors, Carrier concentration and Fermi level for intrinsic semiconductor, Carrier concentration, Fermi level and conductivity of extrinsic semiconductor.	08	2				
3	Dielectric Properties of Materials	Polarization, Depolarization field, Electric susceptibility, Polarizability, Sources of polarizability (electronic, ionic, dipolar and orientational), Classical theory of electric polarizability, Frequency dependence of ionic polarizability, Local electric field at an atom, Clausius-Mosotti equation, Langevin-Debye equation, Complex dielectric constant and loss.	08	3				
4	Magnetic Properties of Materials	Magnetic properties of matter: dia, para, ferri and ferromagnetic materials, Classical Langevin theory of dia and paramagnetic materials, Quantum mechanical treatment of paramagnetism, Curie law, Weiss's theory of ferromagnetic domains, Discussion of B-H Curve, hysteresis and energy loss.	08	4				
5	Optical Properties of Materials	Classical Model-Drude model, ionic conduction, Optical refractive index and relative dielectric constant, Optical absorption in metals, semiconductors and insulators, Colour centres, Excitons, Luminescence, LED, Photo detector, Photomultiplier.	08	5				
Referen	nce Books:							
Introdu	uction to Solid State Ph	ysics by Charles Kittel (Willey Publication).						
		cs by Puri and Babbar (S. Chand). Pillai (New Age International).						
	rning Source:							
https://	//nptel.ac.in/courses/115	5/104/115104109/						
https://	//nptel.ac.in/courses/115	5/105/115105099/						
https://	//nptel.ac.in/courses/113	3/107/113107075/						
https://	//nptel.ac.in/courses/115	5/101/115101007/						

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	
C01	3	-	1	-	1	2	-	3	3	2	1	-	
CO2	3	-	2	-	3	2	2	3	3	2	1	-	
CO3	3	-	2	-	3	2	2	3	3	2	1	-	
CO4	3	-	1	-	2	2	2	3	3	2	1	-	
CO5	3	-	2	-	3	2	2	3	3	2	1	-	

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator Sign & Seal of HoD

Effective from Sessio	n: 2018-19							
Course Code	PY306	Title of the Course	Physics of Materials	L	L T P			
Year	Third	Semester	Fifth	3	1	0	4	
Pre-Requisite	10+2 with Physics	Co-requisite						
Course Objectives	materials to obtain	quantitative relations w	to impart basic and key knowledge of materials. By using t which are very important for further research. After succe bject into their respective dimensions.			•		

	Course Outcomes								
CO1	To learn about crystal structure and its fractures								
CO2	To introduce crystal imperfection and elastic properties of crystals.								
CO3	To introduce the structure of metals, alloys, ceramics and glasses and their processing.								
CO4	To Introduce the Nanomaterials and nanotechnology								
CO5	To learn various characterization techniques of nanoparticles or nanomaterials								

Introduction Introduction: Atomic basis of structure – ionic bonding, Covalent bonding, Metallic bonding, Secondary bonding, Crystalline and non-crystalline states, crystal symmetry, silica and silicates, polymers, fullerenes. 08 1 2 Introduction Fracture: Ductile fracture, Fraitue fracture. Fracture toughness, Ductile-brittle transition, Protection against fracture. Brittle fracture. 08 1 2 Crystal Imperfections and Elastic Properties: Crystal Imperfections: Point, line, surface and volume imperfections, dislocations and their geometry. Disorder in polymers and non-crystalline materials. 08 2 3 Processing of Materials Structure of metals and alloys, structure of ceramics and glasses, structure of polymers, structure of composites (qualitative). Brief introduction of processing of metals, alloys, ceramic and glasses. 08 3 4 Introduction to Nanomaterials: Ol-Gel synthesis method. Applications of nanomaterials. Methods to produce nanomaterials: classification and properties, Nanowires: classification, properties and applications. Nanocomputers. 08 4 5 Tools and Technique: V. J. Zaroff (Tata McGraw Hill). Crystallography: Particle size determination, Electron Microscopy: Scanning Electron Microscope, atomic force microscope (AFM) (qualitative). 08 5 5 Tools and Technique: A. J. Dekker (Prentice-Hall). Electron microscope, Atomic force microscope (AFM) (qualitativ	Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
2 Crystal Imperfections and Elastic Properties geometry, Disorder in polymers and non-crystalline materials. Elastic Properties: 08 2 3 Structure and Processing of Materials Structure of metals and alloys, structure of ceramics and glasses, structure of polymers, structure of composites (qualitative). Brief introduction of processing of metals, alloys, ceramic and glasses. 08 3 4 Introduction to Nanomaterials Brief introduction of nanomaterials, properties of Nanomaterials. Carbon Nanomaterials: Sol-Gel synthesis method. Applications of nanomaterials. Carbon Nanomaterials: classification and properties, Nanowires: classification, properties and applications. Nanocomputers. Tools and Techniques 08 4 5 Tools and Techniques Microscopy (SEM), Tunneling Electron Microscopy (TEM) (qualitative), sample preparation for an electron microscope, Difference between TEM and SEM, Disadvantages of electron microscope, atomic force microscope (AFM) (qualitative). 08 5 Introduction to Solid State Physics: C. Kittel (Wiley, VII ed.) Introduction to Solid State Physics: C. Kittel (Wiley, VII ed.) 1 1 Introduction to Solid State Physics: A.G. Guy (McGraw Hill). 5 5 1 Solid State Physics: A.J. Dekker (Prentice-Hall). 5 1 5 Introduction to Solid State Physics: A.G. Guy (McGraw Hill). 5 1 5 Sol	1	Introduction	htroduction bonding, Secondary bonding, Crystalline and non-crystalline states, crystal symmetry, silica and silicates, polymers, fullerenes. Fracture: Ductile fracture, Brittle fracture, Fracture toughness, Ductile-brittle transition, Protection against fracture, Fatigue fracture.							
3 Processing of Materials structure of composites (qualitative). Brief introduction of processing of metals, alloys, ceramic and glasses. 08 3 4 Introduction to Nanomaterials Brief introduction of nanomaterials, properties of Nanomaterials. Carbon Nanomaterials: Sol-Gel synthesis method. Applications of nanomaterials. Carbon Nanomaterials: Classification and properties, Nanowires: classification, properties and applications. Nanocomputers. 08 4 5 Tools and Techniques Crystallography: Particle size determination, Electron Microscopy: Scanning Electron Microscopy (SEM), Tunneling Electron Microscopy (TEM) (qualitative), sample preparation for an electron microscope, Difference between TEM and SEM, Disadvantages of electron microscope, atomic force microscope (AFM) (qualitative). 08 5 Reference Books: Introduction to Solid State Physics: C. Kittel (Wiley, VII ed.) Introduction to Solid State Physics: C. Kittel (Wiley, VII ed.) 5 Introduction to Solid State Physics: A.G. Guy (McGraw Hill). Seinter in Source: https://nptel.ac.in/courses/115/104/115104109/ https://nptel.ac.in/courses/115/105/115105099/ 4 https://nptel.ac.in/courses/113/107/113107075/ 5	2	Imperfections and	geometry, Disorder in polymers and non-crystalline materials. Elastic Properties: Elastic behavior and its atomic model, Rubber like elasticity, anelastic behavior, relaxation processes, viscoelastic behavior, plastic deformation	08	2					
4 Introduction to Nanomaterials nanomaterials: Sol-Gel synthesis method. Applications of nanomaterials. Carbon Nanomaterials: classification and properties, Nanowires: classification, properties and applications. Nanocomputers. 08 4 5 Tools and Techniques Crystallography: Particle size determination, Electron Microscopy: Scanning Electron Microscope, Difference between TEM and SEM, Disadvantages of electron microscope, atomic force microscope (AFM) (qualitative). 08 5 Reference Books: Introduction to Solid State Physics: C. Kittel (Wiley, VII ed.) Introduction to Solid State Physics: A.J. Dekker (Prentice-Hall). 5 0 5 Solid State Physics: A.J. Dekker (Prentice-Hall). 5 Essentials of Materials Science: A.G. Guy (McGraw Hill). For a classification of Solid State Physics: A.J. Dekker (Prentice-Hall). Essentials of Materials Science: A.G. Guy (McGraw Hill). For a classification of Solid State Physics: A.J. Dekker (Prentice-Hall). Essentials of Materials Science: A.G. Guy (McGraw Hill). 5 For a classification of Solid State Physics: A.J. Dekker (Prentice-Hall). Essentials of Materials Science: A.G. Guy (McGraw Hill). 5 For a classification of Solid State Physics: A.J. Dekker (Prentice-Hall). Https://nptel.a	3	Processing of structure of composites (qualitative). Brief introduction of processing of metals, alloys,								
5 Tools and Techniques Microscopy (SEM), Tunneling Electron Microscopy (TEM) (qualitative), sample preparation for an electron microscope, Difference between TEM and SEM, Disadvantages of electron 08 5 Reference Books: Introduction to Solid State Physics: C. Kittel (Wiley, VII ed.) Introduction to Solids: L.V. Azaroff (Tata McGraw Hill). 5 Solid State Physics: A.J. Dekker (Prentice-Hall). 5 Essentials of Materials Science: A.G. Guy (McGraw Hill). 5 e-Learning Source: 1 https://nptel.ac.in/courses/115/104/115104109/ 5 https://nptel.ac.in/courses/115/105/115105099/ 5 https://nptel.ac.in/courses/113/107/113107075/ 5	4	Brief introduction of nanomaterials, properties of Nanomaterials.Introduction to NanomaterialsCarbon Nanomaterials:Carbon Nanomaterials:								
Introduction to Solid State Physics: C. Kittel (Wiley, VII ed.) Introduction to Solids: L.V. Azaroff (Tata McGraw Hill). Solid State Physics: A.J. Dekker (Prentice-Hall). Essentials of Materials Science: A.G. Guy (McGraw Hill). e-Learning Source: https://nptel.ac.in/courses/115/104/115104109/ https://nptel.ac.in/courses/115/105/115105099/ https://nptel.ac.in/courses/113/107/113107075/	5		Microscopy (SEM), Tunneling Electron Microscopy (TEM) (qualitative), sample preparation for an electron microscope, Difference between TEM and SEM, Disadvantages of electron	08	5					
Introduction to Solids: L.V. Azaroff (Tata McGraw Hill). Solid State Physics: A.J. Dekker (Prentice-Hall). Essentials of Materials Science: A.G. Guy (McGraw Hill). e-Learning Source: https://nptel.ac.in/courses/115/104/115104109/ https://nptel.ac.in/courses/115/105/115105099/ https://nptel.ac.in/courses/113/107/113107075/	Referen	nce Books:								
Solid State Physics: A.J. Dekker (Prentice-Hall). Essentials of Materials Science: A.G. Guy (McGraw Hill). e-Learning Source: https://nptel.ac.in/courses/115/104/115104109/ https://nptel.ac.in/courses/115/105/115105099/ https://nptel.ac.in/courses/113/107/113107075/	Introdu	uction to Solid State Ph	ysics: C. Kittel (Wiley, VII ed.)							
Essentials of Materials Science: A.G. Guy (McGraw Hill). e-Learning Source: https://nptel.ac.in/courses/115/104/115104109/ https://nptel.ac.in/courses/115/105/115105099/ https://nptel.ac.in/courses/113/107/113107075/										
e-Learning Source: https://nptel.ac.in/courses/115/104/115104109/ https://nptel.ac.in/courses/115/105/115105099/ https://nptel.ac.in/courses/113/107/113107075/										
https://nptel.ac.in/courses/115/104/115104109/ https://nptel.ac.in/courses/115/105/115105099/ https://nptel.ac.in/courses/113/107/113107075/			x. A.O. Ouy (McOlaw fill).							
https://nptel.ac.in/courses/115/105/115105099/ https://nptel.ac.in/courses/113/107/113107075/		<u> </u>	5/10//11510/100/							
https://nptel.ac.in/courses/113/107/113107075/		•								
		•								
	•	•								

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5		
C01	3	2	1	2	1	2	3	2	1	2	2	-		
CO2	1	3	2	-	3	1	2	1	2	3	3	-		
CO3	3	2	1	1	2	2	3	3	3	2	2	-		
CO4	2	2	3	-	1	1	2	1	2	2	3	-		
CO5	1	3	1	2	3	2	1	2	1	2	1	-		
			1 Low Co	malation. 2	Modorato	Correlation	n. 2 Subata	ntial Com	lation					

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:	201-19						
Course Code	PY309	Title of the Course	UG Physics Project	L	Т	Р	С
Year	Third	Semester	Sixth	0	0	8	4
Pre-Requisite	10+2 with Chemistry	Co-requisite					
Course Objectives	The main objective is to e	enhance the technical skil	ls and to provide students industrial exposure.				

	Course Outcomes								
CO1	Hands on training								
CO2	Integrate class room theory with laboratory scale practice.								
CO3	Understanding professional ethics of industry and code of conduct.								
CO4	Increase the students' knowledge and understanding of physics.								
CO5	Ensure that students receive essential training in physics laboratory safety procedures								

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	
CO	101	102	105	104	105	100	107	1501	1502	1505	1504	1505	
CO1	3	-	-	-	2	3	3	3	3	3	3	3	
CO2	3	-	-	-	2	3	3	3	3	3	3	3	
CO3	3	-	-	-	1	3	3	3	3	3	3	3	
CO4	3	-	-	-	1	3	3	3	3	3	3	3	
CO5	3	1	-	-	3	3	3	3	3	3	3	3	

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator