

Integral University, Lucknow Department of Mathematics & Statistics <u>Study and Evaluation Scheme (w.e.f 2020-21)</u>

M. Sc. (Statistics)

Ist year / Ist Semester

	Course code			Period Per hr/week/sem			Eva	aluation So	heme						Attr	ibutes				United	
S. No.		Course Title	Type of Paper	L	т	Р	ст	ТА	Total	ESE	Sub. Total	Credit	Tota I Cred its	Employa bility	Entre prene urship	Skill Developme nt	Gende r Equali ty	Environ ment & Sustaina bility	Hu ma F n Val ue	Professi onal Ethics	Nations iustainabl velopme Goals (SDGs
THEO	RIES		1		1			ł	1 1		I	1	I	I	1	I		1			
1	MT406	Real Analysis	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					9 ADDISTRY ANNUAL
2	MT410	Complex Analysis	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					9 ADUSTIV ANDVAID AND IN RASTRUCTUR
3	MT422	Sample Surveys	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V				٧	11 SUSTAINABL
4	MT423	Probability Theory	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					10 REDUCE INEQUAL
5	MT424	Reliability Theory	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					12 RESPONSI CONSUMP AND PROD
PRAC	TICAL											•									
6	MT425	Sample Surveys and R – programmin g Lab	C or e	00	00	06	40	20	60	40	100	0:0:3	3	V		V				V	11 SUSTAINABL
Tota				15	05	06	240	120	360	240	600	23	23								

CT = Class Test; TA = Teacher's Assessment,; ESE = End Semester Examination; Sessional = CT + TA; Subject Total = Sessional + ESE

Effective from Session	Effective from Session: 2022 - 23											
Course Code	Course Code MT406		Real Analysis	L	Т	Р	С					
Year	Ι	Semester	Ι	3	1	0						
Dro Doquisito	B. Sc. with	Co requisito										
r re-Kequisite	Mathematics	Co-requisite										
	1. To familiarize students with various concepts of Real Analysis.											
Course Objectives	2. The course will help the	2. The course will help the student to understand sequence and Series of functions (convergent and uniform convergent),										
Course Objectives	3. The course will also develop an understanding of solving Riemann Stieltjes integral and Power series.											
	4. The course will further	develop understa	nding the concepts of Cauchy criterion for uniform converge	ence.								

	Course Outcomes
CO1	Students will gain an understanding of countability of Sets, Lebesgue measure on the real line, Length of intervals. They will also learn about
	Cantor set, outer and inner Lebesgue measure, Lebesgue measurable sets and properties of measurable sets.
CO2	Students will be able to understand Sequence and Series of functions, Pointwise and uniform convergence, Cauchy criterion for uniform
	convergence. They will learn to define Weierstrass M test, Abel's and Dirichlet's test, for uniform convergence. Properties of uniformly
	convergent series of functions.
CO3	Students will create the own understanding of Weierstrass approximation theorem, some integrable functions, Definition and existence of
	Pointwise and uniform convergence, Properties and some important theorems on Riemann Stieltjes integral.
CO4	Students will be able to understand the concepts of Power series and radius of convergence and interval of convergence. Uniqueness theorem
	of power series. They will also learn about Abel's and Taylor's theorem, Riemann's theorem.
CO5	Students will create the own understanding of functions of several variables, partial derivatives and total derivatives. They will learn about
	Jacobian, chain rule, interchange of the order of differentiation & higher derivatives. Students will also be able to understand inverse function
	theorem and implicit function.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Real Numbers & measurable sets	Countability of Sets, Lebesgue measure on the real line, length of intervals, Cantor set. Outer and inner Lebesgue measure, Lebesgue measurable sets, properties of measurable sets.	8	1
2	convergence & uniform convergence	Sequence and Series of functions, pointwise and uniform convergence, Cauchy criterion for uniform convergence, Weierstrass M test, Abel's and Dirichlet's test for uniform convergence. Properties of uniformly convergent series of functions	8	2
3	Reimann Stieltjes integral	Weierstrass approximation theorem, some integrable functions. Definition and existence of Pointwise and uniform convergence, Properties and some important theorems on Riemann Stieltjes integral.	8	3
4	Power Series Power Series, Radius of convergence and interval of convergence. Uniqueness theorem of power series, Abel's, Taylor's theorem and Riemann's theorem.		8	4
5	Partial and Total differentiations	Functions of several variables, properties of Jacobians. Partial derivatives, Total derivative, Jacobian, Chain rule, interchange of the order of differentiation, higher derivatives, inverse function theorem, implicit function theorem.	8	5
Referen	ce Books:			
1. W	V. Rudin: Principle of M	athematics Analysis		
2. D	. Somasundramand B.C	houdhary: A First Course in Mathematical Analysis, Narosa, 199		
3. S	.C.Malik:Mathematical	Analysis, Wiley Eastern, India		
4. Ja	in,P.K. & GuptaV.P., L	ebesgue measure and Integration, Willey Eastern Ltd., New Age Int. Ltd., New Delhi, (1994).		
e-Learn	ing Source:			
• · · · · · ·				

https://www.youtube.com/watch?v=Xx7ULr79fy0&list=PLbMVogVj5nJSxFihV-ec4A3z_FOGPRCo-&index=4 https://www.youtube.com/watch?v=Xx7ULr79fy0&list=PLbMVogVj5nJSxFihV-ec4A3z_FOGPRCo-&index=4

https://www.youtube.com/watch?v=AqHxSRul-Ck

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4		
CO														
CO1	3	1	1	1	2	1	1	3	3	2	1	1		
CO2	3	1	2	1	3	1	2	3	3	3	2	1		
CO3	3	1	2	1	3	1	1	3	3	2	2	1		
CO4	3	1	1	1	2	1	2	3	3	2	1	1		
CO5	3	1	1	1	2	1	1	2	3	3	1	1		

Name & Sign of Program Coordinator	Sign & Seal of HoD
Nume & Sign of Frogram Coordinator	Sign & Scar of Hob

Effective from Session: 2015 - 16										
Course Code	MT410	Title of the Course	Complex Analysis	L	Т	Р	С			
Year	Ι	Semester	Ι	3	1	0				
Pre-Requisite	B.Sc. with	Co-requisite								
The Requisite	Maths	corequisite								
	The purpose of this postgraduate course is to impart basic and key knowledge of complex analysis. By using the principal									
Course Objectives	of pure and applied mathematics to obtain quantitative relations which are very important for higher studies. After									
	successfully comp	letion of course, th	e student will able explore subject into their respective dime	nensions						

	Course Outcomes
CO1	Find and interpret Analytic functions, Cauchy Riemann Equations, Harmonic function, velocity potential, Cauchy Integral Theorem and
	Cauchy integral formula
CO2	Evaluate and Interpret the Power series, Uniform convergence, Taylor's series, zeros of analytic functions, Laurent's series, Integration
	and differentiation of power series, multiplication and division of power series.
CO3	Describe and evaluate the Cauchy residue theorem, evaluation of real definite integration when function has no pole on real axis and pole lies
	on real axis, Integral involving many valued functions, contour
CO4	State and explain Conformal bilinear exponential and trigonometric transformations, special bilinear and Schwarz,-Christoffel transformations
CO5	State and explain the Weierstrass's theorem, principle of maximum modulus, Schwarz's lemma, Picard's theorem, Jensen inequality
	and formula, Hadamard's three circle theorem and as a convexity

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Unit-1	Analytic functions, Cauchy Riemann Equations, Harmonic function, velocity potential, Milne's Thomson method, Cauchy Integral Theorem and Cauchy integral formula	8	1
2	Unit-2	Power series, Uniform convergence, Taylor's series, zeros of analytic functions, Laurent's series, Integration and differentiation of power series, multiplication and division of power series.	8	2
3	Unit-3 Cauchy residue theorem, evaluation of real definite integration when function has no pole on real axis and pole lies on real axis, Integral involving many valued function, rectangular contours Cauchy residue theorem, evaluation of real definite integration when function has no pole on real axis and pole lies on real axis, Integral involving many valued function, rectangular contours		8	3
4	Unit-4	Conformal bilinear exponential and trigonometric transformations, special bilinear and Schwarz, -Christoffel transformations.	8	4
5	Unit-5	Weierstrass's theorem, principle of maximum modulus, Schwarz's lemma, Picard's theorem, Jensen inequality and formula, Hadamard's three circle theorem and as a convexity	8	5
Referen	ce Books:			
1. L. V	7. Alforse, Complex Ana	alysis, McGraw-Hill Book Company		
2. B. C	Chaudhary, The element	s of Complex Analysis, Wiley Eastern		
3. Sha	nti Narayan, Theory of	Functions of a complex variable, S. Chand & Co.		
e-Lear	rning Source:			

1. http://www.bhojvirtualuniversity.com/slm/mscmath1p4.pdf

2. http://web.math.ku.dk/noter/filer/koman-12.pdf

3. https://www.youtube.com/watch?v=YORGYJKDDN0

				С	ourse Articul	lation Matrix	: (Mapping o	of COs with	POs and PSOs	5)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	1	1	1	2	1	1	3	3	2	1	1
CO2	3	1	2	1	3	1	2	3	3	3	2	1
CO3	3	1	2	1	3	1	1	3	3	2	2	1
CO4	3	1	1	1	2	1	2	3	3	2	1	1
CO5	3	1	1	1	2	1	1	2	3	3	1	1

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2021 - 2022											
Course Code	MT422	Title of the Course	Sample surveys	L	Т	Р	С				
Year	Ι	Semester	Ι	3	1	0					
Pre-Requisite	Concept of sampling Techniques	Co-requisite									
Course Objectives	Course Objectives The course objective is to learn the basic concept and importance of sampling and know how results from samples can bused to provide estimates of population characteristics such as the population mean, the population standard deviation and / or the population proportion. Learn about a variety of sampling methods including stratified random sampling, cluster sampling, systematic sampling and also apply in real life situation										

	Course Outcomes
CO1	Students will be able to understand the concept of Estimation of population mean, total, and proportion in simple random sampling and stratified random sampling, Estimation of gain due to stratification. Ratio and regression methods of estimation. Unbiased ratio type estimators. Optimality of ratio estimate. Separate and combined ratio and regression estimates in simple random sampling and stratified sampling and their comparisons
CO2	Students will be able to understand the concept of Cluster sampling and derive the Estimation of population mean and their variances based on cluster of equal and unequal sizes, variances in terms of intra-class correlation coefficient. Determination of optimum cluster size, varying probability sampling: Probability proportional to size (pps) sampling with and without replacement and related estimators of finite population mean.
CO3	Students will be able to understand the concept of Two stage sampling and derive the Estimation of population total and mean with equal and unequal first stage units (FSU), variances and their estimation. Optimum sampling and sub-sampling fractions (for equal FSU's only). Selection of FSU's with varying probabilities and with replacement only
CO4	Students will be able to understand the concept and derivations of Double Sampling: Need for double sampling, double sampling with ratio and regression method of estimation, double sampling for stratification.
CO5	Students will be able to understand the concept of Sources of errors in surveys: Sampling and non-sampling errors, various types of non- -sampling errors and their sources. Estimation of mean and proportion in the presence of non-response, Optimum sampling fraction among non-respondents. Interpenetrating samples. Randomized response technique

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO		
1		Students will be able to understand the concept of Estimation of population mean, total, and proportion in simple random sampling and stratified random sampling, Estimation of gain due to stratification. Ratio and regression methods of estimation. Unbiased ratio type estimators. Optimality of ratio estimate. Separate and combined ratio and regression estimates in simple random sampling and stratified sampling and their comparisons	08	1		
2		Students will be able to understand the concept of Cluster sampling and derive the Estimation of population mean and their variances based on cluster of equal and unequal sizes, variances in terms of intra-class correlation coefficient. Determination of optimum cluster size, varying probability sampling: Probability proportional to size (pps) sampling with and without replacement and related estimators of finite population mean.	08	2		
3		Students will be able to understand the concept of Two stage sampling and derive the Estimation of population total and mean with equal and unequal first stage units (FSU), variances and their estimation. Optimum sampling and sub-sampling fractions (for equal FSU's only). Selection of FSU's with varying probabilities and with replacement only	08	3		
4		Students will be able to understand the concept and derivations of Double Sampling: Need for double sampling, double sampling with ratio and regression method of estimation, double sampling for stratification.	08	4		
5		Students will be able to understand the concept of Sources of errors in surveys: Sampling and non- sampling errors, various types of non -sampling errors and their sources. Estimation of mean and proportion in the presence of non-response, Optimum sampling fraction among non-respondents. Interpenetrating samples. Randomized response technique	08	5		
Referen	Reference Books:					
Cochran	, W.G., (1977): S	ampling Techniques, 3rd edition, John Wiley.				
Des Raj	and Chandak (19	98): Sampling theory, Narosa.				
Murthy,	M.N. (1977): Sar	mpling theory and methods. Statistical Publishing Society, Calcutta.				
Sukhatm	ne et al. (1984): S	ampling theory of surveys with applications, Lowa state university press.				
Singh, D	D. and Chaudary,	F.S. (1986): Theory and analysis of sample survey designs. New age international publishers.				
e-Lean	rning Source:					
https://	www.youtube.co	m/watch?v=be9e-Q-jC-0				
https://	www.youtube.co	m/watch?v=bQ5_PPRPjG4				
https://	www.youtube.co	<u>m/watch?v=jauhoR7w1YM</u>				

Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
2	3	1	3	3	2	1	3	3	3	3	3
3	3	3	2	3	2	2	3	3	3	3	2
2	3	2	3	3	2	3	3	3	3	3	3
2	3	3	1	2	2	1	3	3	3	3	3
3	2	1	2	3	2	1	3	3	3	3	2
	PO1 2 3 2 2 3 3	PO1 PO2 2 3 3 3 2 3 2 3 3 2 3 2 3 2 3 2	PO1 PO2 PO3 2 3 1 3 3 3 2 3 2 2 3 2 3 3 3 2 3 2 3 2 1 3 2 1	PO1 PO2 PO3 PO4 2 3 1 3 3 3 3 2 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 1 3 2 1 2	PO1 PO2 PO3 PO4 PO5 2 3 1 3 3 3 3 3 2 3 2 3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 3 2 3 3 3 2 1 2 3 3 2 1 2 3	PO1 PO2 PO3 PO4 PO5 PO6 2 3 1 3 3 2 3 3 2 3 2 3 2 2 3 2 3 2 3 2 2 3 2 3 3 2 3 2 3 2 3 3 2 3 2 3 3 1 2 2 2 3 2 1 2 3 2 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 2 3 1 3 3 2 1 3 3 3 2 3 2 2 2 3 2 3 2 2 1 3 3 2 3 2 3 2 2 2 3 2 3 3 2 3 3 2 3 2 3 3 1 2 2 1 3 3 2 1 3 2 1 2 3 2 1 3 3 1 3 2 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 3 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 2 3 1 3 3 2 1 3 3 3 3 2 3 2 3 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 3 2 3 2 3 3 2 3 3 2 3 3 1 2 2 1 3 3 2 1 2 3 2 1 3 3 2 1 2 3 2 1 3 3 2 1 2 3 2 1 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PS01 2 3 1 3 3 2 1 3 3 3 3 3 2 3 2 3 3 3 2 3 2 3 2 3 3 3 2 3 2 3 3 2 3 3 2 3 2 3 3 2 3 3 2 3 2 3 3 2 3 3 2 3 3 1 2 2 1 3 3 3 2 1 2 3 2 1 3 3 3 2 1 2 1 3 3 3 3 2 1 2 3 2 1 3 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PS01 PS02 2 3 1 3 3 2 1 3 3 3 3 3 2 3 2 3 3 3 3 2 3 2 3 2 3 3 3 2 3 2 3 2 3 3 3 2 3 2 3 3 2 3 3 3 2 3 2 3 3 2 3 3 3 2 3 3 1 2 2 1 3 3 3 3 2 1 2 3 2 1 3 3 3 3 2 1 2 3 2 1 3 3 3 3 2 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PS01 PS02 PS03 2 3 1 3 3 2 1 3 3 3 3 3 3 2 3 2 3 3 3 3 2 3 2 3 2 2 3 3 3 3 2 3 2 3 2 3 </th

Name & Sign of Program Coordinator	Sign & Seal of HoD	

Effective from Session: 2021 - 2022							
Course Code	MT423	Title of the Course	Probability Theory	L	Т	Р	C
Year	Ι	Semester	Ι	3	1	0	
Pre-Requisite	Basics of probability and its distribution	Co-requisite					
Course Objectives	The course objective is to learn the basic concept of probability theory and its applications for decision- making in economics, business, and other fields of sciences. Our everyday lives, as well as economic and business activities, are full of uncertainties and probability theory offers useful techniques for quantifying these uncertainties. The course is heavily oriented towards the formulation of mathematical concepts on probability and probability distributions and densities with practical applications.						

a	0 1
Course	Outcomes

	oourse outcomes
CO1	Students will be able to understand the concept of Random experiment, sample space, Ring, field, sequences of sets, Inferior
	and superior limits of sequences of sets, Measure and probability measure, Lebesgue and Lebesgue-Stieltjes measure,
	Measurable and Borel measurable function, Integration of a measurable function w.r.to a measure, Monotone class, Monotone
	convergence theorem, Fatous lemma and dominated convergence theorem.
CO2	Students will be able to understand the concept of Random variable (r.v) and functions of random variable, Distribution
	function and its properties, Representation of distribution as a mixture of distributions, Heavy tailed distribution, Compound,
	truncated and mixture distributions.
CO3	Students will be able to understand the derivation to obtain the Mathematical expectation and moments, Probability generating
	function (PGF), moment generating function (MGF), and characteristic function (CF) and their interrelationships, Properties of
-	CF.
CO4	Students will be able to understand the concept and applications of Discrete distributions: Uniform, Bernaulli, Binomial,
	Poisson, Geometric, Negative Binomial and Hyper geometric distribution, Convergence in probability and convergence in
	distribution
CO5	Students will be able to understand the concept and applications of MGF and CF for continuous random variable, Inversion
	theorem, and continuity theorem. Examples of continuous distributions: Uniform, Normal, Exponential, Gamma, Beta, Weibull,
	Pareto, Laplace, Lognormal, Logistic and Log-Logistic distribution.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO			
1		Students will be able to understand the concept of Random experiment, sample space, Ring, field, sequences of sets, Inferior and superior limts of sequences of sets, Measure and probability measure, Lebesgue and Lebesgue-Stieltjes measure, Measurable and Borel measurable function, Integration of a measurable function w.r.to a measure, Monotone class, Monotone convergence theorem, Fatous lemma and dominated convergence theorem	08	1			
2		Students will be able to understand the concept of Random variable (r.v) and functions of random variable, Distribution function and its properties, Representation of distribution as a mixture of distributions, Heavy tailed distribution, Compound, truncated and mixture distributions	08	2			
3		Students will be able to understand the derivation to obtain the Mathematical expectation and moments, Probability generating function (PGF), moment generating function (MGF), and characteristic function (CF) and their interrelationships, Properties of CF.	08	3			
4		Students will be able to understand the concept and applications of Discrete distributions: Uniform, Bernaulli, Binomial, Poisson, Geometric, Negative Binomial and Hyper geometric distribution, Convergence in probability and convergence in distribution.	08	4			
5		Students will be able to understand the concept and applications of MGF and CF for continuous random variable, Inversion theorem, continuity theorem. Examples of continuous distributions: Uniform, Normal, Exponential, Gamma, Beta, Weibull, Pareto, Laplace, Lognormal, Logistic and Log-Logistic distribution.	08	5			
Refere	nce Books:						
Bhat,	B. R (1981): M	odern Probability Theory, Wiley Eastern Ltd., New Delhi.					
Rohat	gi, V. K. (1988)): An Introduction to Probability and Mathematical Statistics, Wiley, Eastern Limited.					
C. R. 1	Rao: Linear stat	tistical inference and its applications, John Wiley and sons Inc.					
Halmo	Halmous. Paul. R: Measure Theory, Springer.						
e-Lea	rning Source:						
https:/	//www.youtube.	.com/watch?v=UnzbuqgU2LE					
https:/	//www.khanaca	demy.org/math/ap-statistics/random-variables					
https:/	//www.mathtuto	ordvd.com					

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	2	3	3	2	3	2	2	3	3	3	3	3
CO2	3	2	3	2	2	2	2	3	3	3	3	2
CO3	3	3	2	2	3	3	2	3	3	3	3	3
CO4	2	3	3	3	3	2	1	3	3	3	3	2
CO5	2	2	3	3	3	2	2	3	3	3	3	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2021 - 2022							
Course Code	MT 424	Title of the Course	Reliability Theory	L	Т	Р	С
Year	Ι	Semester	Ι	3	1	0	
Pre-Requisite	Basics of reliability	Co-requisite					
Course Objectives	The course objective is	to learn the basic conc	ept of Reliability theory and its application	ons for	decisi	ion-	
Course Objectives	Making in the field of	sciences and engineering	ıg.				

	Course Outcomes
CO1	Students will be able to understand the concept of Reliability function, hazard rate function, pdf in the form of Hazard
	function, Reliability function and mean time to failure distribution (MTTF) with DFR and IFR.
CO2	Students will be able to understand the Applications of exponential, normal and lognormal, Weibull and gamma
	distributions in reliability theory. Memory Loss property of exponential distribution.
CO3	Students will be able to understand the derivation to obtain Life cycle curves and probability distribution in modeling reliability, Reliability of the system with independent limit connected in (a) series (b) parallel and (c) k out of n systems.
CO4	Students will be able to understand the procedure of Reliability and mean life estimation based on failures time from (i)
	Complete data (ii) Censored data with and without replacement of failed items following exponential distribution [N C r],
	[N B r], [N B T], [N C(r, T)], [N B(r T)], [N C T].
CO5	Students will be able to understand the concept and applications of Accelerated testing: types of acceleration and stress
	loading. Life stress relationships. Arrhenius – lognormal, Arrhenius-Weibull, Arrhenius-exponential models, Power-
	Weibull and power exponential models.

Unit No	Title of the	Content of Unit	Contact Hrs	Mapped CO
1		Definition of Reliability function, hazard rate function, pdf in the form of Hazard function, Reliability function and mean time to failure distribution (MTTF) with DFR and IFR.	08	1
2		Applications of exponential, normal and lognormal, Weibull and gamma distributions in reliability theory. Memory Loss Cases property of exponential distribution.	08	2
3		Life cycle curves and probability distribution in modeling reliability, Reliability of the system with independent limit connected in (a) series (b) parallel and (c) k out of n systems.	08	3
4		Reliability and mean life estimation based on failures time from (i) Complete data (ii) Censored data with and without replacement of failed items following exponential distribution [N C r], [N B r], [N B T], [N C(r, T)], [N B(r T)], [N C T].	08	4
5		Accelerated testing: types of acceleration and stress loading. Life stress relationships. Arrhenius – lognormal, Arrhenius-Weibull, Arrhenius-exponential models, Power-Weibull and power exponential models.	08	5
Referen	ce Books:			
Sinha,	, S.K. (1980): Rel	iability and life testing, Wiley, Eastern Ltd.		
Nelson	n, W. (1989): Acc	celerated Testing, Wiley.		
Zacks	, S.O.: Introduction	on to reliability analysis, probability models and statistical, Springer Verlag		
e-Lear	ning Source:			

https://www.youtube.com/watch?v=xnAuIbiLS8Y

https://www.youtube.com/watch?v=VFNaLRNo-DI

https://www.youtube.com/watch?v=kU32nAniKBk

https://www.youtube.com/watch?v=6CLEWA2WNqM

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO-PSO	PO1	PO2	PO3	PO/	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO/			
CO	101	102	105	104	105	100	107	100	1501	1502	1505	1504			
CO1	2	3	1	2	2	3	2	3	3	3	3	3			
CO2	3	3	2	2	1	3	3	3	3	3	3	2			
CO3	2	2	1	2	3	3	2	3	3	3	3	3			
CO4	3	3	1	3	2	3	3	3	3	3	3	2			
CO5	2	3	2	3	2	3	2	3	3	3	3	3			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2021 - 2022												
Course Code	MT425	Title of the Course	Sample survey and R programming Lab	L	Т	Р	С					
Year	Ι	Semester	Ι	0	0	4						
Pre-Requisite		Co-requisite										
Course Objectives	To teach students the practical implementation of sampling theory, Ratio and regression method of											
course conjectives	estimation.	stimation. To make students able to work out all practical using R-Softwre.										

	Course Outcomes									
CO1	After successful completion of Practical 1, students will be able to make use of simple random sampling.									
CO2	After successful completion of Practical 2, students will be able to make use of stratified random sampling.									
CO3	After successful completion of Practical 3 and 5, students will be able to make use of cluster sampling and two stage sampling.									
CO4	After successful completion of Practical 4, students will be able to apply concept of ratio regression method for estimation.									
CO5	After successful completion of Practical 6, students will be able to use of R Software to workout sampling problems.									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO							
1	Practical 1	Practical based on Simple Random Sampling		CO1							
2	Practical 2	Practical based on Stratified Random Sampling		CO2							
3	Practical 3	Practical based on Cluster Sampling		CO3							
4	Practical 4	Practical based on Ratio and regression method		CO4							
5	5 Practical 5 Two stage sampling										
6 Practical 6 Analysis by R programming											
Referen	Reference Books:										
Cochr	an, W.G., (1977): Sar	npling Techniques, 3rd edition, John Wiley.									
Des R	aj and Chandak (1998	3): Sampling theory, Narosa.									
Murth	y, M.N. (1977): Sam	pling theory and methods. Statistical Publishing Society, Calcutta.									
Sukha	ttme et al. (1984): Sar	npling theory of surveys with applications, Lowa state university press									
Singh	, D. and Chaudary, F.	S. (1986): Theory and analysis of sample survey designs. New age international publis	hers.								
e-Lear	ning Source:										
https:/	https://www.youtube.com/watch?v=OTVk28caCxw										
https:/	https://www.youtube.com/watch?v=be9e-Q-jC-0										
https:/	//www.youtube.com/v	vatch?v=bQ5_PPRPjG4									
https:/	//www.youtube.com/v	vatch?v=jauhoR7w1YM									

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PSO1	PSO2	PSO3	PSO4			
CO	101	102	105	104	105	100	107	108	1501	1302	1505	1304			
CO1	3	2	1	2	1	1	3	3	3	3	3	3			
CO2	2	1	2	1	2	1	2	3	3	3	3	2			
CO3	3	2	1	1	2	1	3	2	3	3	3	2			
CO4	2	1	2	1	2	1	2	3	3	3	3	2			
CO5	3	1	2	2	2	1	2	2	3	3	3	3			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Integral University, Lucknow Department of Mathematics & Statistics <u>Study and Evaluation Scheme(w.e.f 2020-21)</u>

M. Sc.	(Statis	tics)														I st y	ear / II	Ind Sen	nester		
	Cour			h	Period Per r/week/se	em		Eva	luation So	heme			То				Attribu	ites			United Nations Sustainabl
S. No	· cod e	Course Title	Type of Paper	L	т	Р	ст	ТА	Total	ESE	Sub. Total	Credi t	tal Cre dit s	Employ ability	Entre prene urship	Skill Devel opme nt	Gender Equality	Environ ment & Sustaina bility	Human Value	Professi onal Ethics	Go als (SD Gs
TH	IEORIES								1									1	1		
:	1 MT416	Linear Algebra	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					9 NEESEY MENDA AND IN LASTRECTURE
	2 MT427	Linear Models & Regression Analysis	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		٧					12 RESPONSIBLE CONSUMPTIO AND PRODUCT
	3 MT428	Design & Analysis of Experiments	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					12 RESPONSIBLE CONSUMPTIO AND PRODUCT
	4 MT429	Statistical Inference-I	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		٧					11 SUSTAINABLE (AND COMMUNI
!	5 MT430	Non-Parametric & Order Statistics	Core	03	01	00	40	20	60	40	100	3:1: 0	4	V		٧					8 ECCENTINGER AND ECCHANNE GROWTH
PF	ACTICAL																				
(5 MT43 1	Data Analytics with SPSS	Core	00	00	06	40	20	60	40	100	0:0:3	3	V		٧				V	8 ECCENT NUDEX AND ECONOMIC GROWTH
			Total	15	05	06	240	120	360	240	600	23	23								

Effective from Session: 2018 - 19												
Course Code	MT416 Title of the Course I		Linear algebra	L	Т	Р	С					
Year	Ι	Semester	Π	3	1	0						
Pre-Requisite	B.Sc. with Mathematics	Co-requisite										
Course Objectives	ourse Objectives This course enables the students to understand the basic ideas of vector algebra, linear dependent and independent set and basis. Students of the course should master properties of matrices including how to use them to solve linear systems of equations and how they are used in linear transformations between vector spaces.											

	Course Outcomes								
CO1	Students will be able to explain the concept of vector spaces and linear dependency of vectors.								
CO2	Students will be able to describe basis, rank of matrices and direct sum of vector spaces.								
CO3	Students will be an understanding of linear operators, their properties and algebra of transformations.								
CO4	Students will be able to describe Matrix representation of a linear transformation and their applications.								
CO5	Students will be able to explain eigen values, change of basis and diagonalization.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Unit 1	Vector spaces, subspaces, examples, Linear dependence and independence, Spanning set, Linear span, Row space of matrix.	8	1						
2	Unit 2	Unit 2 Basis and dimension, Application to matrices, Rank of matrices, Direct sums and complements, Quotient spaces.								
3	Unit 3	8	3							
4	Unit 4	Students will be able to describe Matrix representation of a linear transformation and their applications.	8	4						
5	Unit 5	Students will be able to explain eigen values, change of basis and diagonalization.	8	5						
Referen	nce Books:									
1. Hoff	man & Kunze: Linear	Algebra								
2. V Kr	ishnamurthy: An intro	oduction to linear algebra								
3. Schar	um's Outline Series: 1	Linear Algebra								
e-Lea	rning Source:									
1. https://	://nptel.ac.in/courses/	111/105/111105112/								
2. https://	2. https://nptel.ac.in/courses/111/101/111101115/									
3. https://	://nptel.ac.in/courses/	111/106/111106135/								
5. mps.		111/100/111100100/								

				Course A	rticulation	Matrix: (I	Mapping of C	Os with POs	and PSOs)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	3	1	2	3	1	2	3	3	2	1	1
CO2	3	2	2	2	2	1	3	3	3	3	2	1
CO3	3	2	2	2	2	1	2	2	3	2	2	1
CO4	3	2	2	2	2	1	2	3	3	2	1	1
CO5	3	2	1	2	3	1	2	3	3	3	1	1
			1	Low Com	alation 2	Madamata (Completion.	Cubatantia	Complet	0 m		

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2021 - 2022										
Course Code	MT 427	Title of the Course	Linear Models & Regression Analysis	L	Т	Р	С			
Year	Ι	Semester	Π	3	1	0				
Pre-Requisite	Simple	Co-requisite								
TTe Requisite	regression	corequisite								
Course Objectives	The course ol design of exp	e course objective is to introduce basic and advance concepts of general linear model, and its application areas like sign of experiments, econometrics, survival analysis and demography								

	Course Outcomes
CO1	Students will be able to understand the concept of Gauss-Markov Set-up, Normal equations and Least square estimates. Variance and
	Covariances of least square estimates, estimation of error variance, least square estimates with restrictions on parameters. Simultaneous
	estimates of linear parametric functions.
CO2	Students will be able to understand the simple linear regression, multiple regressions, fitting of polynomials and use of orthogonal
	polynomials, selecting the best regression equation: Stepwise regression, backward elimination
CO3	Students will be able to understand the concept of Test of hypotheses for one and more than one linear parametric functions. Confidence intervals and regions. Analysis of variance, multiple comparison tests due to Tukey and Scheffe
CO4	Students will be able to understand the procedure of Residuals and their plots Tests for departure from assumptions such as fitness of the
	model normality, homogeneity of variances and detection of outliers, Remedies
CO5	Students will be able to understand the concept and applications of Multicollinearity, Ridge regression and Principal Component
	regression, subset selection of explanatory variables, Mallow's Cp statistic, Introduction to logistic regression

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1		Gauss-Markov Set-up, Normal equations and Least square estimates. Variance and Covariances of least square estimates, estimation of error variance, least square estimates with restrictions on parameters. Simultaneous estimates of linear parametric functions.	08	1					
2		simple linear regression, multiple regressions, fitting of polynomials and use of orthogonal polynomials, selecting the best regression equation: Stepwise regression, backward elimination	08	2					
3		Test of hypotheses for one and more than one linear parametric functions. Confidence intervals and regions, Analysis of variance, multiple comparison tests due to Tukey and Scheffe	08	3					
4		Residuals and their plots Tests for departure from assumptions such as fitness of the model normality, homogeneity of variances and detection of outliers, Remedies	08	4					
5		Multicollinearity Ridge regression and Principal Component regression, subset selection of explanatory variables, Mallow's Cp statistic, Introduction to logistic regression	08	5					
Referen	Reference Books:								
Cook,	R.D. and Weisbe	rg, S.: Residual and Influence in Regression. Chapman and Hall.							
Draper	, N.R.and Smith,	H.: Applied Regression Analysis, Wiley.							
Gunst,	F. and Mason, R	L.: Regression analysis and its Applications - A Data Oriented Aproach. Marcel and Dekker.							
Montg	omery D.C., Pecl	K E.A. and Vining G.G.: Introduction to Linear Regression Analysis. Wiley.							
Weisb	erg, S.: Applied I	Linear Regression. Wiley.							
e-Lear	ning Source:								
https:/	//www.youtube.c	<u>:om/watch?v=m88h75F3Rl8</u>							
https:/	//www.youtube.c	<u>com/watch?v=zPG4NjIkCjc</u>							
https:/	//www.youtube.c	<u>com/watch?v=owI7zxCqNY0</u>							
https:/	//www.youtube.c	om/watch?v=lzGKRSvs5HM							

			Course	Articulatio	n Matrix:	(Mapping	of COs with	POs and P	SOs)			
PO-PSO	PO1 PO2		DO3	DO4	DO5	DOG	DO7	DOS	DSO1	DSO2	DSO2	DSO4
СО	POI	102	F03	104	105	FO0	FO/	FUð	1301	F302	1303	1504
CO1	3	1	1	1	2	3	3	3	3	3	2	2
CO2	3	1	1	1	1	3	3	3	3	3	3	3
CO3	3	1	1	2	1	3	3	3	3	3	3	2
CO4	3	3	1	3	2	3	3	3	3	3	3	3
CO5	3	2	1	1	2	3	3	3	3	3	3	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2021 - 2022										
Course Code	MT 428	Title of the Course	Design & Analysis of Experiments	L	Т	Р	С			
Year	Ι	Semester	П	3	1	0				
Pre-Requisite	Analysis of variance Co-requisite									
Course Objectives	The course objective is to symmetric designs CRD, experiments and their prace	learn the the concept of De RBD and LSD with and wit ctical applications.	sign of experiment and its basic principles a hout missing observations. Also learn the co	nd per	form th of facto	e basic orial				

	Course Outcomes								
CO1	Students will be able to understand the concept of Analysis of variance and multiple comparisons tests, principles of design of experiments								
	and relative efficiency. Fixed, mixed and random effects models; Variance components estimation - study of various methods; Tests for								
	variance components; Basic designs-CRD, RBD, LSD and their analyses, Orthogonality of classification in two-way lay-outs. Missing plot								
	technique - general theory and applications.								
CO2	Students will be able to understand. General factorial experiments – symmetric and asymmetric factorials, study of 2n and 3n factorial								
	experiments in randomized blocks, complete and partial confounding; Fractional replications for symmetric factorials.								
CO3	Students will be able to understand the concept of General block design: Criteria for connectedness, incomplete block designs, balanced								
	incomplete block designs, simple lattice designs								
CO4	Students will be able to understand the procedure of Nested and split plot designs – Two stage nested designs, split plot designs, strip								
	plot designs, strip-split designs, Analysis of covariance for CRD and RBD with one, two covariates; clinical trials, longitudinal data,								
	treatment- control designs								
CO5	Students will be able to understand the concept and applications of Response surface designs: Response surface areas, first and second								
	order designs, blocking in response surfaces, optimal designs for response surfaces.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1		Analysis of variance and multiple comparisons tests, principles of design of experiments and relative efficiency. Fixed, mixed and random effects models; Variance components estimation - study of various methods; Tests for variance components; Basic designs-CRD, RBD, LSD and their analyses, Orthogonality of classification in two-way lay-outs. Missing plot technique - general theory and applications.	08	1
2		General factorial experiments – symmetric and asymmetric factorials, study of 2n and 3n factorial experiments in randomized blocks, complete and partial confounding; Fractional replications for symmetric factorials.	08	2
3		General block design: Criteria for connectedness, incomplete block designs, balanced incomplete block designs, simple lattice designs.	08	3
4		Nested and split plot designs – Two stage nested designs, split plot designs, strip plot designs, strip-split designs, Analysis of covariance for CRD and RBD with one, two covariates; clinical trials, longitudinal data, treatment- control designs.	08	4
5		Response surface designs: Response surface areas, first and second order designs, blocking in response surfaces, optimal designs for response surfaces.	08	5
Referen	ce Books:			
Wu C.	F.J and Hamada. M	I.: Experiments, Planning, Analysis and Optimization, Wiley		
Montg	omery D. C.: Desig	n and Analysis of Experiments, Wiley		
Oehler	rt. G. W.: A First co	urse in Design and Analysis of Experiments. University of Minnesota		
Casella	a, G.: Statistical De	sign. Springer		
Khuri,	A. and Cornell. M	Response Surface Methodology. Marcel Dekker		
e-Lear	rning Source:			
https:/	//www.moresteam	.com/toolbox/design-of-experiments.cfm		
https:/	//www.youtube.co	m/watch?v=tZWAYbKYVjM		

https://www.youtube.com/watch?v=NsSwzZNeWrM

			Course	Articulatio	n Matrix:	(Mapping	of COs with	POs and P	SOs)			
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	2	3	1	2	2	3	3	2	3	3	3	2
CO2	3	2	1	2	1	3	3	3	3	3	3	2
CO3	2	2	1	2	3	3	2	3	3	3	3	2
CO4	3	3	1	3	2	3	3	3	3	3	3	2
CO5	2	2	1	3	2	3	3	3	3	3	3	2
		1	- Low Co	rrelation · 2	- Moderat	e Correlati	on· 3. Subst	antial Corr	elation			

Sign & Seal of HoD

Name & Sign of Program Coordinator

Effective from Session: 2021 - 2022										
Course Code	MT 429	Title of the Course	Statistical Inference-I	L	Т	Р	С			
Year	Ι	Semester	II	3	1	0				
Pre-Requisite	Simple regression	Co-requisite								
Course Objectives	To introduce the concepts of statistical inference and its applications in real data analysis including sample									
Course Objectives	surveys, design of experiments, and	econometrics.								

	Course Outcomes
CO1	Students will be able to understand the concept of Criterion of a good estimator: unbiased, consistency, efficiency and sufficiency. Minimal sufficient statistics, Exponential and Pitman family of distributions, complete sufficient statistic, Rao-Blackwell theorem, Lehmann-Scheffe theorem
CO2	Students will be able to understand the Cramer-Rao lower bound, Method of moment estimators, Maximum likelihood estimator (MLE), its small and large sample properties, Method of Minimum Chi square, Method of Least Squares, CAN and BAN estimators
CO3	Students will be able to understand the concept of Randomized and Non-randomized tests, Most Powerful (MP) test, Uniformly Most Powerful (UMP) and Uniformly Most Powerful Unbiased (UMPU) tests, UMP tests for monotone likelihood ratio (MLR) family of distributions
CO4	Students will be able to understand the procedure of Likelihood ratio test (LRT) with its asymptotic distribution, Similar tests with Neyman structure, Ancillary statistic and Basu's theorem. Construction of similar and UMPU tests through Neyman structure
CO5	Students will be able to understand the concept and applications of Interval estimation, confidence level, construction of confidence intervals using pivots, shortest expected length confidence interval, uniformly most accurate one sided confidence interval and its relation to UMP test for one sided null against one sided alternative hypothesis

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1		Criterion of a good estimator: unbiased, consistency, efficiency and sufficiency. Minimal sufficient statistics, Exponential and Pitman family of distributions, complete sufficient statistic, Rao-Blackwell theorem, Lehmann-Scheffe theorem	08	1
2		Cramer-Rao lower bound, Method of moment estimators, Maximum likelihood estimator (MLE), its small and large sample properties, Method of Minimum Chi square, Method of Least Squares, CAN and BAN estimators	08	2
3		Randomized and Non-randomized tests, Most Powerful (MP) test, Uniformly Most Powerful (UMP) and Uniformly Most Powerful Unbiased (UMPU) tests, UMP tests for monotone likelihood ratio (MLR) family of distributions	08	3
4		Likelihood ratio test (LRT) with its asymptotic distribution, Similar tests with Neyman structure, Ancillary statistic and Basu's theorem. Construction of similar and UMPU tests through Neyman structure	08	4
5		Interval estimation, confidence level, construction of confidence intervals using pivots, shortest expected length confidence interval, uniformly most accurate one sided confidence interval and its relation to UMP test for one sided null against one sided alternative hypothesis	08	5
Referen	nce Books:			
Lehma	ann, E.L., Cas	sella, G.: Theory of Point Estimation, Springer.		
Lehma	ann, E.L., Roi	mano, J.P., Casella, G.: Testing Statistical Hypothesis, Springer.		
Rao, C	C.R.: Linear S	tatistical Inference and its Applications, Wiley.		
Rohat	gi, VK and Sa	aleh, A.K.: An introduction to probability and statistics, John Wiley		
Kale,	B. K.: A First	Course on Parametric Inference, Narosa Publishing House.		
Casell	aG. and Berg	er R.L.: Statistical Inference, Duxbury.		
e-Lea	rning Source	*		
https:	//www.yout	ube.com/watch?v=tFRXsngz4UQ		
https:	//www.yout	ube.com/watch?v=wyu7uUbVYYM		
https:	//www.yout	ube.com/watch?v=WkOinijQmPU		

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PSO1	PSO2	PSO3	PSO/
CO	101	102	105	104	105	100	107	108	1501	1502	1505	1504
CO1	2	1	2	1	1	2	3	3	3	3	3	3
CO2	2	1	2	1	1	3	3	3	3	3	3	2
CO3	3	1	1	2	1	3	3	3	3	3	3	2
CO4	3	3	1	3	2	3	3	3	3	3	3	3
CO5	3	2	1	1	2	3	3	3	3	3	3	2

1 1 2 3 5 5 5 1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2021 - 2022											
Course Code	MT 430	Title of the Course	Non Parametric & Order Statistics	L	Т	Р	С				
Year	Ι	Semester	Π	3	1	0					
Pre-Requisite	Probability distribution	Probability distribution Co-requisite									
Course Objectives	The objective is to introduce	The objective is to introduce the concepts and applications of Non Parametric & Order Statistics									

	Course Outcomes
CO1	Students will be able to understand the concept of Order Statistics: Discrete & continuous joint and marginal distribution of
	order statistics, distribution of range, distribution of censored sample, example based on continuous distributions.
CO2	Students will be able to understand the Moments of order statistics, Large sample approximations to mean and variance of
	order statistics. Asymptotic distributions of order statistics, Recurrence relations and identities for moments of order
	statistics, Distribution-free bounds for moments of order statistics and of the range
CO3	Students will be able to understand the concept of Non-parametric location tests: One sample problem: Sign test, signed rank
	test, Kolmogrov-Smirnov test, 1 est of independence (run test). I wo sample problem: wilcoxon-Mann-wnitney test, Median
~ ~ .	test, Konnogrov-Sinimov test
CO4	Students will be able to understand the procedure of Non-parametric scale tests: Ansari-Bradely test, Mood test, Kendall's Tau
	test, test of randomness, consistency of tests and ARE
CO5	Students will be able to understand the concept of Limit distribution of k-th order statistics. Extreme value laws and their
	properties: asymptotic joint distribution of extreme order statistics, asymptotic distribution of central order statistic

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1		Order Statistics: Discrete & continuous joint and marginal distribution of order statistics, distribution of range, distribution of censored sample, example based on continuous distributions.	08	1
2		the Moments of order statistics, Large sample approximations to mean and variance of order statistics. Asymptotic distributions of order statistics, Recurrence relations and identities for moments of order statistics, Distribution-free bounds for moments of order statistics and of the range	08	2
3		Non-parametric location tests: One sample problem: Sign test, signed rank test, Kolmogrov-Smirnov test, Test of independence (run test). Two sample problem: Wilcoxon-Mann-Whitney test, Median test, Kolmogrov-Smirnov test	08	3
4		Non-parametric scale tests: Ansari-Bradely test, Mood test, Kendall's Tau test, test of randomness, consistency of tests and ARE	08	4
5		Limit distribution of k-th order statistics. Extreme value laws and their properties; asymptotic joint distribution of extreme order statistics, asymptotic distribution of central order statistic	08	5
Referen	ce Books:			
Gibbo	ns, J. D. and Ch	nakraborti, S.: Nonparametric Statistical Inference, CRC Press.		
Hogg,	R. V., McKear	, J. and Craig, A. T.: Introduction to Mathematical Statistics, Pearson		
Arnole	d, B. C., Balakr	ishnan, N. and Nagaraja H. N.: A First Course in Order Statistics, John Wiley & Sons.		
Randl	es, R. H. and W	olfe, D. A.: Introduction to the Theory of Nonparametric Statistics, Krieger.		
Galar	bos, J.: The As	ymptotic Theory of Extreme Order Statistics, Wiley.		
e-Lear	ning Source:			
https:	//www.youtub	e.com/watch?v=gDtkGqLD1R0		

https://www.youtube.com/watch?v=gEa8XbPnT-k

https://www.coursera.org/lecture/inferential-statistics/6-01-non-parametric-tests-why-and-when-7GQkp http://www.bristol.ac.uk/medical-school/media/rms/red/rank_based_non_parametric_tests.html

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO	PO1	PO2	PO3	PO/	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO/
СО	101	102	105	104	105	100	107	108	1301	1302	1303	1304
CO1	2	1	1	2	1	2	3	2	3	3	3	2
CO2	2	1	2	1	1	3	2	3	3	3	3	3
CO3	3	1	2	1	1	2	3	3	3	3	3	3
CO4	3	3	1	3	2	3	3	3	3	3	3	2
CO5	3	2	1	1	2	3	3	3	3	3	2	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from Session: 2021 - 2022											
Course Code	MT 431	Title of the Course	Data Analytics with SPSS	L	Т	P	С				
Year	Ι	Semester	Π	0	0	6					
Pre-Requisite		Co-requisite									
Course Objectives	The objective	The objective is to train the students in statistical data analysis using SPSS software package in real life problems									

	Course Outcomes
CO1	Students will be practically able to understand the concept of Introduction to SPSS: Layout of SPSS, data editor window, data files, import
	and export of data files, defining variables, data and variable views, entry, recoding, computing new variables, selection of cases, splitting
	and merging of files, working with multiple data sources.
CO2	Students will be practically able to understand the Analyzing Data, Frequencies, descriptive statistics, percentile ranks for a
	single/multiple variables, Measures of central tendency for single/multiple groups, standard scores, bar charts, histograms, pie chart,
	scatter plots and box plots, Summarize, Means, OLAP Curves.
CO3	Students will be practically able to understand the concept of Pearson correlation coefficient, Spearman correlation coefficient, Partial
	Correlation, Distances, simple linear regression, multiple linear regression. Testing of Hypothesis: Parametric tests; Single sample t test,
	Independent samples t test, paired t test.
CO4	Students will be practically able to understand the procedure of One way ANOVA, Factorial ANOVA, Repeated Measures ANOVA, Analysis
	of Covariance, multiple comparison test. Cronbach's alpha test, Test – retest Reliability
CO5	Students will be practically able to understand the concept of Nonparametric tests; chi square goodness of fit, chi square test for
	independence, run test for randomness, Kruskal Wallis Test Sign Test, Mann Whitney U test, Wilcoxon signed-rank test sign test for
	location, median test, Kolmogorov-Smirnov test - one and two sample problems

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1		Introduction to SPSS: Layout of SPSS, data editor window, data files, import and export of data files, defining variables, data and variable views, entry, recoding, computing new variables, selection of cases, splitting and merging of files, working with multiple data sources.	08	1				
2		Analyzing Data, Frequencies, descriptive statistics, percentile ranks for a single/multiple variables, Measures of central tendency for single/multiple groups, standard scores, bar charts, histograms, pie chart, scatter plots and box plots, Summarize, Means, OLAP Curves.	08	2				
3		Pearson correlation coefficient, Spearman correlation coefficient, Partial Correlation, Distances, simple linear regression, multiple linear regression. Testing of Hypothesis: Parametric tests; Single sample t test, Independent samples t test, paired t test.	08	3				
4		One way ANOVA, Factorial ANOVA, Repeated Measures ANOVA, Analysis of Covariance, multiple comparison test. <i>Cronbach's alpha</i> test, Test – retest Reliability	08	4				
5		Nonparametric tests; chi square goodness of fit, chi square test for independence, run test for randomness, Kruskal Wallis Test Sign Test, Mann Whitney U test, Wilcoxon signed-rank test sign test for location, median test, Kolmogorov-Smirnov test - one and two sample problems	08	5				
Referer	ce Books:							
John N	AacInnes, An Intr	oduction to Secondary Data Analysis with IBM SPSS Statistics, Sage.						
Marija	Norusis, The SPS	S Guide to Data Analysis.						
Stephe	en A. Sweet, and I	Karen Grace-Martin, Data Analysis with SPSS: A First Course in Applied Statistics, Pearson.						
Pallant, Julie,SPSS Survival Manual, McGraw-Hill.								
Cronk	, Brian, How to U	se SPSS: A Step-By-Step Guide to Analysis and Interpretation, Pyrczak Publishing						

Landau S. and Everitt B.S., A handbook of Statistical Analysis using SPSS, Chapman & Hall.

Cleophas T.J. and Zwinderman A.H., SPSS for Starters, Springer

e-Learning Source:

https://www.youtube.com/watch?v=U18BD4jqz5g

https://www.youtube.com/watch?v=TZPyOJ8tFcI

https://www.youtube.com/watch?v=6rgwgwv8qdA

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	DO8	DSO1	DSO2	DSO3	DSO4	
CO	101	102	105	104	105	100	107	100	1301	1502	1305	1504	
CO1	3	1	1	1	1	2	3	3	3	3	3	3	
CO2	2	1	1	1	1	1	2	3	3	3	3	3	
CO3	3	1	1	1	1	1	3	3	3	3	3	3	
CO4	3	1	1	1	2	1	3	3	3	3	3	3	
CO5	3	1	1	1	1	1	3	3	3	3	3	3	
		1	T	1. 4	M. 1	. C	2 0 1	4 1 C	1.41.				

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD