

Integral University, Lucknow Department of Mathematics & Statistics Study and Evaluation Scheme (w.e.f. 2020-21)

	M. Sc. (Mathematics)												I st year / I st Semester								
	Course code			ا hr/v	Period Per veek/se	m	Evaluation Scheme								Atte	ributes				Inited Nation Sustainable Development	
S. No.		Course Title	Type of Paper	L	т	Р	ст	TA	Tot al	ES E	Sub. Total	Credit	Credit s	Employabili ty	Entrepr eneurs hip	Skill Development	Gender Equality	Environ ment & Sustaina bility	Human Value	Prof essio nal Ethic s	Goals (SDGs
THEO	RIES				T	1	Ī	1	T					1	Ī					ī	
1	MT406	Real Analysis	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					
2	MT407	Modern Algebra	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					
3	MT408	Ordinary Differential Equations	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					13 climate
4	MT409	Discrete Mathematics	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					
5	MT410	Complex Analysis	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					9 AND
6	MT411	Statistical Techniques	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					12 RESPONSIBLE CONSUMPTION AND PRODUCTION
			Total	18	06	00	240	120	360	240	600	24	24								

CT = Class Test; TA = Teacher's Assessment,; ESE = End Semester Examination; Sessional = CT + TA; Subject Total = Sessional + ESE

Effective from Session	Effective from Session: 2022 - 23												
Course Code	MT406	Title of the Course	Real Analysis	L	Т	Р	С						
Year	Ι	Semester	Ι	3	1	0							
Dro Doquisito	B. Sc. with	Co requisito											
r re-Kequisite	Mathematics	Co-requisite											
	1. To familiarize students with various concepts of Real Analysis.												
Course Objectives	2. The course will help the student to understand sequence and Series of functions (convergent and uniform convergent),												
Course Objectives	3. The course will also develop an understanding of solving Riemann Stieltjes integral and Power series.												
	4. The course will further	develop understa	nding the concepts of Cauchy criterion for uniform converge	ence.									

	Course Outcomes
CO1	Students will gain an understanding of countability of Sets, Lebesgue measure on the real line, Length of intervals. They will also learn about
	Cantor set, outer and inner Lebesgue measure, Lebesgue measurable sets and properties of measurable sets.
CO2	Students will be able to understand Sequence and Series of functions, Pointwise and uniform convergence, Cauchy criterion for uniform
	convergence. They will learn to define Weierstrass M test, Abel's and Dirichlet's test, for uniform convergence. Properties of uniformly
	convergent series of functions.
CO3	Students will create the own understanding of Weierstrass approximation theorem, some integrable functions, Definition and existence of
	Pointwise and uniform convergence, Properties and some important theorems on Riemann Stieltjes integral.
CO4	Students will be able to understand the concepts of Power series and radius of convergence and interval of convergence. Uniqueness theorem
	of power series. They will also learn about Abel's and Taylor's theorem, Riemann's theorem.
CO5	Students will create the own understanding of functions of several variables, partial derivatives and total derivatives. They will learn about
	Jacobian, chain rule, interchange of the order of differentiation & higher derivatives. Students will also be able to understand inverse function
	theorem and implicit function.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Real Numbers & measurable sets	Countability of Sets, Lebesgue measure on the real line, length of intervals, Cantor set. Outer and inner Lebesgue measure, Lebesgue measurable sets, properties of measurable sets.	8	1
2	convergence & uniform convergence	Sequence and Series of functions, pointwise and uniform convergence, Cauchy criterion for uniform convergence, Weierstrass M test, Abel's and Dirichlet's test for uniform convergence. Properties of uniformly convergent series of functions	8	2
3	Reimann Stieltjes integral	Weierstrass approximation theorem, some integrable functions. Definition and existence of Pointwise and uniform convergence, Properties and some important theorems on Riemann Stieltjes integral.	8	3
4	Power Series	8	4	
5	Partial and Total differentiations	8	5	
Referen	ce Books:			
1. W	V. Rudin: Principle of M	athematics Analysis		
2. D	. Somasundramand B.C	houdhary: A First Course in Mathematical Analysis, Narosa, 199		
3. S	.C.Malik:Mathematical	Analysis, Wiley Eastern, India		
4. Ja	in,P.K. & GuptaV.P., L	ebesgue measure and Integration, Willey Eastern Ltd., New Age Int. Ltd., New Delhi, (1994).		
e-Learn	ing Source:			
• · · · · · ·				

https://www.youtube.com/watch?v=Xx7ULr79fy0&list=PLbMVogVj5nJSxFihV-ec4A3z_FOGPRCo-&index=4 https://www.youtube.com/watch?v=Xx7ULr79fy0&list=PLbMVogVj5nJSxFihV-ec4A3z_FOGPRCo-&index=4

https://www.youtube.com/watch?v=AqHxSRul-Ck

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4		
CO														
CO1	3	1	1	1	2	1	1	3	3	2	1	1		
CO2	3	1	2	1	3	1	2	3	3	3	2	1		
CO3	3	1	2	1	3	1	1	3	3	2	2	1		
CO4	3	1	1	1	2	1	2	3	3	2	1	1		
CO5	3	1	1	1	2	1	1	2	3	3	1	1		

Name & Sign of Program Coordinator	Sign & Seal of HoD
Nume & Sign of Frogram Coordinator	Sign & Scar of Hob

Effective from Session: 2015 - 16											
Course Code	MT407	Title of the Course	Modern Algebra	L	Т	Р	С				
Year		Semester	Ι	3	1	0					
	B.Sc. with										
Pre-Requisite	Mathemati	Co-requisite									
	cs										
	The objective is to discuss the basic concept to certain classes of groups and rings. The course deals with some algebraic										
Course Objectives	structures, their properties and some of the basic results related to group and ring theory. Modern algebra gives to										
	student a goo	od mathematical maturi	ty and enables to build mathematical thinking and skill.								

	Course Outcomes
CO1	Students will be able to explain the fundamental concept of Certain classes of groups.
CO2	Students will be able to describe Sylow's theorem and their applications.
CO3	Students will be an understanding of ideals and quotient of rings.
CO4	Students will be able to describe integral domains and divisibility in integral domains.
CO5	Students will be able to explain fields, splitting fields and field extensions.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Unit-1	Normal subgroups and Quotient groups, Permutation groups, Homomorphisms, Cayley's theorem.	8	1					
2	Unit-2	Conjugate elements, Class equation, Cauchy theorem, Sylow's theorems and its applications.	8	2					
3	Unit-3	Quotient of rings, Maximal and prime ideals, Homomorphisms, Polynomial rings.	8	3					
4	4 Unit-4 Integral domain, Divisibility in integral domains, Unique factorization domains, Principal ideal domains, Euclidean domains, 4 Unit-4 Polynomial rings over UFD.								
5	5 Unit-5 Fields, Extension of fields, Splitting fields, Algebraic extensions of fields: Irreducible an reducible polynomials.								
Reference Books:									
1. I.	N. Herstein: Topics in A	lgebra, Wiley Eastern Ltd.							
2. Jo	oseph A. Gallian: Conten	nporary Abstract Algebra, Narosa Publishing House.							
3. Si	urjeet Singh and Qazi Za	meeruddin: Modern Algebra, Vikas Publishing House.							
e-Learning Source:									
1. https://nptel.ac.in/courses/111/105/111105112/									
2. https:	//nptel.ac.in/courses/1	11/106/111106131/							
3. https:	//nptel.ac.in/courses/1	11/105/111105112/							

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4		
CO1	3	1	1	1	2	1	1	3	3	2	1	1		
CO2	3	1	2	1	3	1	2	3	3	3	2	1		
CO3	3	1	2	1	3	1	1	3	3	2	2	1		
CO4	3	1	1	1	2	1	2	3	3	2	1	1		
CO5	3	1	1	1	2	1	1	2	3	3	1	1		

Name & Nign of Program ("oordinator" Sign & Neal of Hol)	Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 201	Effective from Session: 2015 - 16										
Course Code	MT408	Title of the Course	L	Т	Р	С					
Year	Ι	Semester	Ι	3	1	0					
Pre-Requisite	B.Sc (Mathemati cs)	B.Sc (Mathemati cs) Co-requisite									
Course Objectives To put it briefly, the point of this class is to take your existing knowledge of calculus and apply it towards the construction and solution of mathematical models in the form of differential equations.											

	Course Outcomes								
CO1	Student will be able to find the complete solution of a non homogeneous differential equation as a linear combination of the complementary								
	function and a particular solution.								
CO2	Student will be introduced to the complete solution of a non homogeneous differential equation with constant coefficients by the method								
	of undetermined coefficients								
CO3	Students will be able to Use power series to solve first-order and second-order differential equations.								
CO4	Successful students in Boundary Value Problems and Differential Equations will be knowledgeable about and will be able to analyze solutions								
	to two-point boundary value problems								
CO5	Students will gain an understanding of Stability of dynamical systems								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Unit-1	Linear differential equations of nth order, fundamental sets of solutions, Wronskian Abel's identity, theorem on linear dependence of solutions, adjoint, self-adjoint linear operator, Green's formula	8	1
2	Unit-2	Adjoint equations, the nth order non homogeneous linear equations, Variation of parameters, zeros of solutions, comparison and separation theorems.	8	2
3	Unit-3	8	3	
4	Unit-4	8	4	
5	Unit-5	Stability of Linear system, Stability of Quasi-linear system, Stability of autonomous system, Stability of non-autonomous system, a particular Lyapunav Function.	8	5
Referen	ce Books:			
1. N	M. D. Rai Singhania, Ad	vance differential equations – S. Chand , 1995.		
2. N	I. D. Rai Singhania, Ord	linary differential equations – S. Chand . 1995		
3. P	. Haitman: Ordinary Dif	ferential Equations, Wiley, New York, 1964.		
4. E	A. Coddington and H.	Davinson: Theory of Ordinary Differential Equations, McGraw Hill, NY, 1955.		
e-Lea	rning Source:			
1. <u>h</u>	ttps://ocw.mit.edu/cours	es/mathematics/18-03-differential-equations-spring-2010/video-lectures/		
2. h	ttps://nptel.ac.in/courses	/111/106/111106100/		
3. h	ttp://www.math.iitb.ac.i	n/~siva/afs07.pdf		

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4		
CO1	3	1	1	1	2	1	1	3	3	2	1	1		
CO2	3	1	2	1	3	1	2	3	3	3	2	1		
CO3	3	1	2	1	3	1	1	3	3	2	2	1		
CO4	3	1	1	1	2	1	2	3	3	2	1	1		
CO5	3	1	1	1	2	1	1	2	3	3	1	1		
			1	T	L	C. 1	1.4	1.4.4.10	1.41					

Name	& Sign	of Program	Coordinator

Effective from Session: 2015 - 16											
Course Code	MT409	MT409 Title of the Course Discrete Mathematics L					С				
Year	Ι	Semester	Ι	3	1	0					
Pre-Requisite	B. Sc. with Mathematic	Co-requisite									
Course Objectives	 To familiar The course The course The course 	rize students with variou will help the student to will also develop an und will further develop un	is concepts of Discrete mathematics. understand propositions and their truth values. derstanding of the elements of Boolean algebra and its vario iderstanding of graphs & trees with its applications.	us asp	ects.	I	1				

0

0

	Course Outcomes								
CO1	Students will gain an understanding of Statements, connectives, Truth tables, Tautologies & Contradictions, Equivalences & Implications.								
	They will be able to understand and implement Normal forms. along with Quantifier, Predicates, Posets & Lattices and also about Lattices								
	on Algebraic systems, Sub-lattices. Understand the formation of Hasse diagram								
CO2	Students will be able to understand Boolean identities, the switching algebra, sub-algebra, Direct product & homomorphism. Boolean								
	forms & their equivalences. They will learn to form Sum of products & Product of sums form, Normal form, Canonical form, Boolean								
	expression & Boolean functions with the help of Karnaugh map method.								
CO3	Students will create the own understanding of Permutations & combinations, Pigeon hole principle. They will learn about Recurrence relation								
	and also about their solution by characteristic roots and Generating function.								
CO4	Students will be able to understand degree of a vertex different types of graphs including Eulerian & Hamiltonian graphs. They will also learn								
	about representation of graphs with the help of matrix. and Graph colouring. They will be able to know about Trees, Binary tree, their types								
	and their properties. They also learn about spanning tree and their formation by Kruskal's algorithm.								
CO5	Students will create the own understanding of relations and their representation by matrix & Digraph. They will learn about Paths &								
	connectivity, composition of relations. Students will also be able to understand Function, their Classification, their types & their								
	composition, growth of functions, Recursive function.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Mathematical logic & Lattices	Statements, connectives, Truth tables, Tautologies & Contradictions. Equivalences & Implications. Normal forms, Quantifier & Predicates. Posets & Lattices, Hasse diagram, Lattices on Algebraic systems, Sub-lattices.	8	1				
2	Boolean Algebra	Boolean identities, the switching algebra, sub-algebra, Direct product & homomorphism. Boolean forms & their equivalences. Sum of products & Product of sums form, Normal form, Canonical form, Boolean expression & Boolean functions-the Karnaugh map method.	8	2				
3	3 Combinatorics Permutations & combinations, Pigeon hole principle, Recurrence relation, solution by characteristic roots, Generating function							
4	Graphs & Trees	8	4					
5	Relation & Functions	Properties, matrix & Digraph representation of relation, Paths & connectivity, composition of relations. Functions: Classification, types & composition of functions, growth of functions, Recursive function.	8	5				
Referen	ce Books:							
1. E	lements of Discrete Mat	hematics, C.L.Liu, Tata McGraw-Hill Publishing Company Ltd, New Delhi.						
2. Dis	crete Mathematical Stru	ctures, Kolman, Busby & Ross, 4e, Prentice Hall of India.						
3. Dis	crete Mathematics with	Graph theory, Goodaire & Parmenter, 2e, Pearson.						
4. Disc	crete Mathematical Strue	ctures, J.P.Tremblay & R.Manohar, McGraw-Hill Book co.						
e-Lear	rning Source:							
1. http:	s://freevideolectures.com	n/course/3517/discrete-mathematics						
2. http	://home.iitk.ac.in/~arlal/	/book/mth202.pdf						

3. https://www.cis.upenn.edu/~jean/discmath-root-b.pdf

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO CO	D- SO O PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PS01 PS02 PS03								PSO4				
CO1	3	1	1	1	2	1	1	3	3	2	1	1	
CO2	3	1	2	1	3	1	2	3	3	3	2	1	
CO3	3	1	2	1	3	1	1	3	3	2	2	1	
CO4	3	1	1	1	2	1	2	3	3	2	1	1	
CO5	3	1	1	1	2	1	1	2	3	3	1	1	
				1- Lo	w Correlat	ion; 2- Mo	derate Corre	lation; 3- Subs	tantial Correla	tio			
	Name	& Sign	of Progra	m Coord	inator			Sign & Se	Sign & Seal of HoD				

Effective from Session: 2015 - 16									
Course Code	MT410	Title of the Course	Complex Analysis	L	Т	Р	С		
Year	Ι	Semester	Ι	3	1	0			
Pre-Requisite	B.Sc. with	Co-requisite							
The Requisite	Maths	corequisite							
	The purpose of this postgraduate course is to impart basic and key knowledge of complex analysis. By using the principal								
Course Objectives	of pure and appl	ied mathematics to	o obtain quantitative relations which are very important f	or hig	her stu	dies. A	fter		
	successfully comp	letion of course, the	e student will able explore subject into their respective dime	nsions					

	Course Outcomes									
CO1	Find and interpret Analytic functions, Cauchy Riemann Equations, Harmonic function, velocity potential, Cauchy Integral Theorem and									
	Cauchy integral formula									
CO2	Evaluate and Interpret the Power series, Uniform convergence, Taylor's series, zeros of analytic functions, Laurent's series, Integration									
	and differentiation of power series, multiplication and division of power series.									
CO3	Describe and evaluate the Cauchy residue theorem, evaluation of real definite integration when function has no pole on real axis and pole lies									
	on real axis, Integral involving many valued functions, contour									
CO4	State and explain Conformal bilinear exponential and trigonometric transformations, special bilinear and Schwarz,-Christoffel transformations									
CO5	State and explain the Weierstrass's theorem, principle of maximum modulus, Schwarz's lemma, Picard's theorem, Jensen inequality									
	and formula, Hadamard's three circle theorem and as a convexity									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Unit-1	Analytic functions, Cauchy Riemann Equations, Harmonic function, velocity potential, Milne's Thomson method, Cauchy Integral Theorem and Cauchy integral formula	8	1
2	Unit-2	Power series, Uniform convergence, Taylor's series, zeros of analytic functions, Laurent's series, Integration and differentiation of power series, multiplication and division of power series.	8	2
3	Unit-3	Cauchy residue theorem, evaluation of real definite integration when function has no pole on real axis and pole lies on real axis, Integral involving many valued function, rectangular contours	8	3
4	Unit-4	Conformal bilinear exponential and trigonometric transformations, special bilinear and Schwarz, -Christoffel transformations.	8	4
5	Unit-5	Weierstrass's theorem, principle of maximum modulus, Schwarz's lemma, Picard's theorem, Jensen inequality and formula, Hadamard's three circle theorem and as a convexity	8	5
Referen	ce Books:			
1. L. V	7. Alforse, Complex Ana	alysis, McGraw-Hill Book Company		
2. B. C	Chaudhary, The element	s of Complex Analysis, Wiley Eastern		
3. Sha	nti Narayan, Theory of	Functions of a complex variable, S. Chand & Co.		
e-Lear	rning Source:			

1. http://www.bhojvirtualuniversity.com/slm/mscmath1p4.pdf

2. http://web.math.ku.dk/noter/filer/koman-12.pdf

3. https://www.youtube.com/watch?v=YORGYJKDDN0

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	
CO1	3	1	1	1	2	1	1	3	3	2	1	1	
CO2	3	1	2	1	3	1	2	3	3	3	2	1	
CO3	3	1	2	1	3	1	1	3	3	2	2	1	
CO4	3	1	1	1	2	1	2	3	3	2	1	1	
CO5	3	1	1	1	2	1	1	2	3	3	1	1	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2018 – 19									
Course Code	MT411	Title of the Course	Statistical Techniques	L	Т	Р	С		
Year	Ι	Semester	ester I 3 1 0						
Pro-Roquisito	B.Sc. with	Co-requisite							
1 re-Requisite	Mathematics	Co-requisite							
	To teach the basic concepts used to describe data. Probability theory and testing of hypothesis. This is a great beginner								
Course Objectives	course for those interested in Data Science, Economics, Psychology, Machine Learning, Sports analytics and just about								
	any other related	l field.							

	Course Outcomes
CO1	Understand of data, scales of measurement, presentation of data with the help of diagrams and graphs.
CO2	Description of data through its central value, variability and shape.
CO3	Understanding of bi-variate data, degree of its relationship and functional relationship between variables. Prediction of future values.
CO4	Explain the concept of weighted and unweighted index numbers, its applications to real life. Consumer Index number.
CO5	Understand the theory of attributes. Contingency tables, class frequencies and ultimate class frequencies, consistency of attributes,
	association of attributes, independence of attribute

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Unit-1	Discrete and continuous data, Frequency and non-frequency data, primary and secondary data, diagrammatic and graphical representation of grouped data, frequency and cumulative frequency distribution and their applications, histogram, frequency polygon, ogives. Concept of central tendency and its measures, partition values, dispersion and relative dispersion, moments, Sheppard's	8	1				
2	Unit-2	Scatter diagram, Karl Pearson's and spearman's rank correlation coefficients, coefficient of determination, correlation ratio, principle of least squares, fitting of linear regression and related results, partial and multiple correlations of three variables, their measures and related results.	8	2				
3	3 Unit-3 Random experiment, trial, sample point, sample space, definitions of equally likely, mutually exclusive and exhaustive events, definition of probability, classical, relative frequency and axiomatic approaches to probability, conditional probability, independence of events, Bayes theorem and its applications.							
4	4 Unit-4 Discrete and continuous random variable, expectation and variance of random variables, Probability mass/ density function, distribution function, joint density function of two continuous variables, marginal and conditional probability density functions, uniform, binomial, Poisson, geometric, negative binomial, hyper geometric and normal distributions.							
5	Unit-5	null and alternative hypotheses, critical region, types of error, level of significance, p-value, size and power of a test, Z, t, chi-square & F tests, analysis of variance: one way and two-way classifications.	8	5				
Referen	ce Books:							
1. Spie	gel M.R. (1967	'): Theory and problem of Statistics, Schaum's Publishing Series						
2. Goo	n A.M., Gupta	M.K. and Das Gupta B. (1991): Fundamental of Statistics, Vol. I, World Press, Calcutta.						
3. Mey	ver P.L. (1970):	Introductory Probability and Statistical Applications, Addison Wesley.						
4. Hog	g R.V. and Cra	ig A.T. (1972): Introduction to mathematical Statistics, Amerind Publishing Co.						
e-Lear	rning Source:							
1.https://www.youtube.com/watch?v=PWbOq-Inmck								
2. https:/	//www.youtube	.com/watch?v=KIBZUk39ncI						
3.https://	/www.youtube.	com/watch?v=jBQCwbHfKoM						
A https:	//www.youtubo	aom/ahannal/UCCTOnirandEMtrue 2JwaDSw						

4. https://www.youtube.com/channel/UCGT0pirandEMtvu-3JwePSw

					Course A	rticulation M	fatrix: (Map	ping of COs	s with POs and	PSOs)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PS01	PS02	PO03	PO4
CO1	3	1	1	1	2	1	1	3	3	2	1	1
CO2	3	1	2	1	3	1	2	3	3	3	2	1
CO3	3	1	2	1	3	1	1	3	3	2	2	1
CO4	3	1	1	1	2	1	2	3	3	2	1	1
CO5	3	1	1	1	2	1	1	2	3	3	1	1

Integral University, Lucknow **Department of Mathematics & Statistics** Study and Evaluation Scheme (w.e.f. 2020-21)

М.	M. Sc. (Mathematics) I st year / II nd Semester																				
		Course Title	Type of	F Per hr		sem		Eva	luation S	cheme			To			Att	ributes				nited Natio Sustainable
S. No.	Course code		Paper	L	т	Ρ	ст	ТА	Total	ESE	Sub. Total	Credit	Cre dit s	Employa bility	Entrepren eurship	Skill Develo pment	Gender Equalit y	Environ ment & Sustaina bility	Hum an Valu e	Professi onal Ethics	Developmen Goals (SDGs
THEOR	RIES																				
1	MT413	Differential Geometry I	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					9 ADDRESS AND ALL AND
2	MT414	Partial Differential Equations	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					13 CLIMATE
3	MT415	Numerical Analysis	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					
4	MT416	Linear Algebra	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					9 Addition And Without
5	MT417	Problem Solving and Computer Programming through C	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					9 ADDRESST: ANDWEDR
PRACT	TICAL																				
6	MT418	Numerical Analysis Lab through C/MATLAB	Core	00	00	04	40	20	60	40	100	0:0:2	2	V		V					
Total ¹⁵				05	04	240	120	360	240	600	22	22									

CT = Class Test; TA = Teacher's Assessment,; ESE = End Semester Examination; Sessional = CT + TA; Subject Total = Sessional + ESE

Ist yoor / Hnd Somostor

Effective from Session: 2022 - 23									
Course Code	MT413	Title of the Course	Differential Geometry I	L	Т	Р	С		
Year	Ι	Semester	ster II 3 1						
Prerequisite	B.Sc. with Mathematics	e. with nematics Co-requisite							
Course Objectives	Course Objectives 1. This is an introductory course on curves and surfaces. The aim of this course is to introduce and develop basic analytic concepts of osculating plane, curvature and torsion of the space curves. 2. This course is aimed to provide an understanding of the first and second fundamental forms of a smooth surface and the concepts of various different types of curvature associated to a surface.								

	Course Outcomes							
CO1	Understand the mathematical tools of tensor calculus and apply it to the geometry of curves and surfaces.							
CO2	Able to calculate the curvature and torsion of a space curves and how they suffice to determine the shape of							
	the curve.							
CO3	Make logical arguments on fundamental forms, Gaussian and mean curvatures to determine the shape of the							
	curve.							
CO4	Characterize the surfaces to totally umbilical and minimal surfaces and efficiently compute the fundamental							
	equations to the surface.							
CO5	Demonstrate the basic concepts of Riemannian manifolds and its submanifolds.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Tensor Analysis	Coordinate transformation, Dummy index, Kronecker delta, Covariant, Contravariant and Mixed tensors, Tensors of higher rank, Symmetric and Skew-symmetric tensors, Tensor algebra, Contraction, Inner product, Metric tensor, Christoffel symbols.	8	1				
2	Space curves	Space curves, parametric representation of curves, Arc length, Tangent line, order of contact, Osculating plane (or curvature plane), Principal normal, Binormal, The unit vectors t, n, b, Curvature and torsion, Serret-Frenet formula.	8	2				
3	8	3						
4	Fundamental Equations	8	4					
5	Riemannian Manifolds	Riemannian manifolds, Riemannian metric, Riemannian connection, Riemannian curvature tensor, First Bianchi identity, Second Bianchi identity, Geodesic in a Riemannian manifold, Basic concepts of submanifolds of a manifold.	8	5				
Referen	ce Books:							
1. Zafar	Ahsan Tensor Calculus	, , Anamaya Publications, New Delhi.						
2. T.J. W	Vilmore An Introduction	to Differential Geometry, Oxford University Press, New Delhi, 1993.						
3. U.C. I	De & A.A. Shaikh Diffe	rential Geometry of Manifolds, Narosa Publishing House Pvt. Ltd, 2007.						
4. Barret	t O' Neill Elementary D	ifferential Geometry, Academic Press, 2006.						
e-Learning Source:								
1. https://www.youtube.com/watch?v=6xgtMQ7WSzQ								
2. https://www.youtube.com/watch?v=-iOcBqxTkx0								
3. https://	//www.youtube.com/wa	tch?v=6js84WA8f58&list=PLq-Gm0yRYwTiFb-dfmrz4E8g6v6tg-x3j						

4. https://www.youtube.com/watch?v=ImIQP9szMGs

					Course A	rticulation	Matrix: (Map	oing of COs wit	th POs and PSO	Os)		
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO												
CO1	3	1	1	1	2	1	1	3	3	2	1	1
CO2	3	1	2	1	3	1	2	3	3	3	2	1
CO3	3	1	2	1	3	1	1	3	3	2	2	1
CO4	3	1	1	1	2	1	2	3	3	2	1	1
CO5	3	1	1	1	2	1	1	2	3	3	1	1
1		Low Co	annolati	on 2 Mod	anoto Conno	lation 2 S	ubstantial Car	rolation				

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Effective from Session: 2015 - 16										
Course Code	MT414	Title of the Course	Partial Differential Equations	L	Т	Р	С			
Year	Ι	Semester	emester II 3 1 0							
Dro Doquisito	B.Sc. with	Co roquisito								
1 re-Kequisite	Mathematics	Co-requisite								
Course Objectives	The objective of this course is to form partial differential equations occurring in the various fields of									
Course Objectives	science and engineering and to provide their analytic solutions.									

	Course Outcomes
CO1	Understanding of some modern methods for studying linear and nonlinear partial differential equations.
CO2	Students will be able to solve linear partial differential equations of both first and second order
CO3	Students will be able to apply partial derivative equation techniques to predict the behavior of certain phenomena.
CO4	Students will be able to extract information from partial derivative models in order to interpret reality
CO5	Students will be able to apply specific methodologies, techniques and resources to conduct research and produce innovative results in
	the area of specialization.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Unit 1	First order partial differential equation, Formulation of first order partial equations, compatibility of first order partial differential equation, classification of the solutions of first order partial differential equation, solutions of Non-linear partial differential equation of first kind.	8	1
2	Unit 2	Second order partial differential equation, origin of second order partial differential equations, linear partial differential equations with constant coefficients, methods of solving linear partial differential equations, classification of partial differential equations, Riemann's method.	8	2
3	Unit 3	Wave equation, solution by the method of separation of variables and integral transforms, The Cauchy problem, Wave equation in cylindrical and spherical polar coordinates.	8	3
4	Unit 4	Laplace equation, solution by the method of separation of variables and transforms. Dirichlets, Neumann's and Churchills problems, Dirichlets problem for a rectangle, half plane and circle, solution of Laplace equation in cylindrical and spherical polar coordinates.	8	4
5	Unit 5	Solutions of boundary value problems: Green's function method for Hyperbolic, Parabolic and Elliptic equations	8	5
Referen	ce Books:			
1. I. N. S	Sneddon, Elements	of Partial Differential Equations, Tata McGraw Hill, New Delhi, 1983.		

2. Lolenath Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, Birkhauser, Boston, 2007.

3. Robert C. McQwen, Partial Differential Equations, Pearson Education, 2004.

4. Shankar Rao, Partial Differential Equations, PHI, 2006.

e-Learning Source:

1. https://ocw.mit.edu/courses/mathematics/18-152-introduction-to-partial-differential-equations-fall-2011/

2. https://nptel.ac.in/courses/111/103/111103021/

 $3.\ https://online.stanford.edu/courses/me300b-partial-differential-equations-engineering$

					Course Arti	culation Mat	rix: (Mappin	g of COs with 1	POs and PS	SOs)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	1	1		2	1	1	3	3	2	1	1
CO2	3	1	2		3	1	1	3	3	3	2	1
CO3	3	1	2		3	1	1	3	3	2	2	1
CO4	3	1	1		2	1	1	3	3	2	1	1
CO5	3	1	1		2	1	1	3	3	3	1	1

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2022	Effective from Session: 2022 - 23								
Course Code	MT415	Title of the Course	Numerical Analysis	L	Т	Р	С		
Year	Ι	Semester	II	3	1	0			
Pre-Requisite	B.Sc. with	Co-requisite							
1	Mathematics								
Course Objectives	The course is air	The course is aimed to develop the skills in numerical analysis which is necessary for grooming them into successful							
course objectives	science graduate	 The topics introduc 	ed will serve as basic tools for specialized studies in science	field.					

	Course Outcomes								
CO1	Apply Numerical analysis which has enormous application in the field of science and some fields of								
	Engineering.								
CO2	Familiar with numerical solutions of nonlinear equations in a single variable.								
CO3	Familiar with finite difference and different type interpolation technique.								
CO4	Familiar with calculation and interpretation of errors in numerical method.								
CO5	Familiar with programming with numerical packages like C++ and MATLAB								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Unit 1	Solution of algebraic and transcendental equations by Newton-Raphson's method, Stephenson method, Muller's method, Chebyshev method, Rate of convergence of Newton-Raphson's and Stephenson method. Eigen value Problem: Power method, Jacobi method and QR method	8	1					
2	2 Various polynomial forms for approximating a given function by Newton's, Gauss's and Stirling's Interpolation formula, Lagrange and Newton's divided difference interpolation Hermite interpolation, quadratic spline, piecewise, cubic spline and multidimensiona interpolation.								
3	Unit 3	Numerical differentiation using different interpolation formula, Euler Maclaurin's formula, Newton's Cote formula, Simpson's, Gauss', Gaussian and Romberg formula for numerical integration and their error estimation, double integrals using trapezoidal and Simpson's rule.	8	3					
4	4 Unit 4 Solution of initial value problems of first and second order by Runge Kutta method, Solution of initial value problems by finite difference equations and Adam's interpolation method Two points boundary value problems for second order linear and non-homogeneous differential equations. Shooting method with least square convergence criterion, finite element method								
5	Unit 5	Solution of Laplace and Poisson's equations by Liebman's method, solution of one- dimensional heat equation by Bender-Schmidt method, solution of one-dimensional wave equation by Crank-Nicholson's method, Laplace equation by relaxation method.	8	5					
Referen	ce Books:								
1. Nume	erical Methods for Sc	ientific and Engineering computation by M.K.							
2. Jain, S	S.R.K. Iyengar, R.K.	Jain, New Age Int. Ltd., New Delhi.							
3. Nume	erical Methods by P. 1	Kandasamy, S. Chand Publ. New Delhi.							
4. Introd	luction to Numerical	Analysis, by S.S. Sastry Prentice Hall Flied							
e-Lear	rning Source:								
1. https:/	//nptel.ac.in/content/s	torage2/nptel_data3/html/mhrd/ict/text/111107105/lec6.pdf							
2. https:/	//nptel.ac.in/content/s	torage2/courses/122104018/node114.html							
3. https:/	//nptel.ac.in/courses/1	11107062/							
1 https:/	//	// / / / / / / / / / / / / / / / / / /							

4. https://www.yumpu.com/en/document/view/8662778/derivation-of-runge-kutta-method-nptel

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	
CO1	3	2	2	1	1	2	1	1	3	2	1	1	
CO2	3	2	2	1	1	3	2	1	3	3	2	1	
CO3	3	2	3	1	1	3	1	1	3	2	2	1	
CO4	3	2	3	1	1	2	2	1	3	2	1	1	
CO5	3	2	1	1	1	3	1	1	3	3	1	1	
			4 T	0 1		4 A 1			1.4				

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from Session: 2	2018 - 19										
Course Code	MT416	Title of the Course Linear algebra		L	Т	Р	С				
Year	Ι	Semester	Π	3	1	0					
Pre-Requisite	B.Sc. with Mathematics	B.Sc. with Mathematics Co-requisite									
Course Objectives	This course en independent se them to solve b spaces.	ables the students t et and basis. Studen linear systems of ec	o understand the basic ideas of vector algebra, linear of ts of the course should master properties of matrices in puations and how they are used in linear transformatio	lepeno ncludi ns bet	lent an ng hov ween v	d v to use rector	e				

	Course Outcomes									
CO1	Students will be able to explain the concept of vector spaces and linear dependency of vectors.									
CO2	Students will be able to describe basis, rank of matrices and direct sum of vector spaces.									
CO3	Students will be an understanding of linear operators, their properties and algebra of transformations.									
CO4	Students will be able to describe Matrix representation of a linear transformation and their applications.									
CO5	Students will be able to explain eigen values, change of basis and diagonalization.									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Unit 1	Vector spaces, subspaces, examples, Linear dependence and independence, Spanning set, Linear span, Row space of matrix.	8	1					
2	2 Unit 2 Basis and dimension, Application to matrices, Rank of matrices, Direct sums and complements, Quotient spaces.								
3	Unit 3	Students will be an understanding of linear operators, their properties and algebra of transformations.	8	3					
4	Unit 4	8	4						
5	Unit 5	Students will be able to explain eigen values, change of basis and diagonalization.	8	5					
Referen	nce Books:								
1. Hoff	man & Kunze: Linear	Algebra							
2. V Kr	ishnamurthy: An intro	oduction to linear algebra							
3. Schar	um's Outline Series: 1	Linear Algebra							
e-Lea	rning Source:								
1. https://	://nptel.ac.in/courses/	111/105/111105112/							
2. https://	://nptel.ac.in/courses/	111/101/111101115/							
3. https://	://nptel.ac.in/courses/	111/106/111106135/							
5. mps.	, inpressues in/ courses/	111/100/111100100/							

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	3	1	2	3	1	2	3	3	2	1	1
CO2	3	2	2	2	2	1	3	3	3	3	2	1
CO3	3	2	2	2	2	1	2	2	3	2	2	1
CO4	3	2	2	2	2	1	2	3	3	2	1	1
CO5	3	2	1	2	3	1	2	3	3	3	1	1
			1	Low Com	alation 2	Madamata (Completion.	Cubatantia	Complet	0 m		

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session	: 2018 - 19							
Course Code	MT417	Title of the Course	Problem solving and computer Programming through c	L	Т	Р	С	
Year	Ι	Semester	Ш	3	1	0		
Pre-Requisite	ite B.Sc. with Co-requisite							
Course Objectives	Students will be able t C programming in det the basic programmin	Students will be able to understand the concepts of programming Language and design principles along with understanding of C programming in detail so that they can independently create their own program to solve the mathematical problems. Learning the basic programming constructs, they can easily switch over to any other language in future.						

	Course Outcomes
CO1	Students will Understand the problem-solving strategy and programming environment
CO2	Students will be able to describe basis, rank of matrices and direct sum of vector spaces.
CO3	Apply different algorithm and identify the way to write the effective program.
CO4	Able to manipulate arrays and strings in the programming. Analyze the use of functions and concept of function call for modular programming
	along with effective use of pointers.
CO5	Create complete program independently to solve the mathematical problems

Unit Contact Mapped Title of the Unit **Content of Unit** Hrs. СО No. Problem Identification, Problem Definition, Goal and Objective, Program Design and Implementation issue: Algorithm, Algorithm Generalization, Algorithm representation, Flow 1 Unit 1 Chart. Program writing: sequence, iterative and selection logic. Type of Programming 8 1 language: Machine level, assembly level, high level and scripting Languages. Programming language tools: Compiler, Interpreter, Linker, Editor. C fundamentals: Character set, Constants, Identifiers, keywords, basic data types, Variables, Unit 2 Operators, Expressions, Statements, Input and Output statements - Structure of a C program 2 8 2 - simple programs. Control statements: if, if-else, nested if, switch, while, do-while, for, break & continue. Nested loops. Unit 3 Single dimensional arrays: defining an array, array initialization, accessing array elements. Programs for sequential search, binary search and bubble sort. Multidimensional arrays: 3 8 3 defining a two-dimensional array, array initialization, accessing elements. Programs for matrix additions and multiplications. Unit 4 Strings: declaring a string variable, reading and displaying strings, Programs for string matching and sorting. Functions: Δ 8 4 Function definition, function call, function prototype, parameter passing, void function Recursion of function. Unit 5 Pointers: declaration, operations on pointers, accessing array elements using pointers, processing strings using pointers, pointer to pointer, array of pointers, pointer to function. Files: Different types of files in C. Opening & closing a file. Writing to and reading from a 5 8 5 file. Dynamic memory allocation. Storage class associated with variables: automatic, static, and external and register. **Reference Books:** 1. Programming in C (5e) - E. Balaguruswamy, Mc Graw Hill 2. Let us C – Yashwant Kanetkar, BPB. 3. How to Programme C Deitel & Deitel, Addison Wesley, Pearson Education Asia 4. Programming with C - Byron S. Gottfried, Tata McGraw Hill. e-Learning Source: 1. https://nptel.ac.in/courses/106105171/ 2. http://www.vssut.ac.in/lecture_notes/lecture1424354156.pdf

3.http://www2.cs.uregina.ca/~hilder/cs833/Other%20Reference%20Materials/The%20C%20Programming%20Language.pdf

				(Course Artic	ulation Ma	trix: (Mappir	ng of COs wit	h POs and	PSOs)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	1	1	2	2	2	3	2	1	1
CO2	3	2	1	1	1	1	1	2	3	3	2	1
CO3	3	2	1	1	1	1	1	1	3	2	2	1
CO4	3	2	1	1	1	2	1	1	3	2	1	1
CO5	3	2	1	1	1	2	2	2	3	3	1	1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

 Name & Sign of Program Coordinator
 Sign & Seal of HoD

Effective from Ses	sion: 2015 - 16						
Course Code	MT418	Title of the Course	Numerical analysis Lab through Matlab/C	L	Т	Р	С
Year	Ι	Semester	II	3	1	0	
Pre-Requisite	B.Sc with Mathematics	Co-requisite					
Course Objectives	 To familiarize stude C++. The course will dev differential equations, The course will also proofs. The course will fur 	ents with numerical relop numerical me and to calculate do develop an unders ther develop proble	techniques needed in problem-solving and industrial ethods aided by technology to solve algebraic, transcer erivatives and integrals by using C++. standing of the elements of error analysis for numerica em solving skills.	applic identa 1 metł	ations 1, and 10ds ar	by usir d certa	ıg

	Course Outcomes
CO1	Apply numerical methods to find our solution of algebraic equations using different methods under different conditions, and
	numerical solution of system of algebraic equations.
CO2	Apply various interpolation methods and finite difference concepts
CO3	Work out numerical differentiation whenever and wherever routine methods are not applicable
CO4	Work out numerical integration whenever and wherever routine methods are not applicable
CO5	Work numerically on the ordinary differential equations using different methods through the theory of finite differences.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	1Unit 1Algebraic and transcendental equations using False Position method, Newton Raphson's method and Mullar's method, also give rate of convergence of roots in tabular form for each method81								
2	Unit 2	Interpolation by Newton's, cubic spline and Lagrange's formulae. 8 2							
3	Unit 3	3 Numerical integration using Simpson's 1/3, Simpson's 3/8 and Romberg formulae. 8 3							
4	Unit 4	4 Numerical solution of O.D.E. using Runge-Kuttal Vth order method. 8 4							
5	Unit 5	Unit 5Matrix addition, multiplication & inverse. Determinant of matrices. Algebraic and transcendental equations85							
Reference Books:									
1.Progr	amming in C (5e) – E	. Balaguruswamy							
2.Computer Based Numerical Techniques by Santosh Kumar									
3.CBNT by Dr. Manish Goyal									
e-Learning Source:									
1.https:/	//www.youtube.com/	watch?v=zT83sJ5IrEE&list=PLyqSpQzTE6M-QT7PvEBHV0iNMvZk9mocO							
2.https:/	//www.youtube.com/	watch?v=IuEOMyGuuIg&list=PLRWKj4sFG7-6_Xr9yqg6SMr_F80KdFVhN							
3.https:/	//www.youtube.com/	watch?v=zjyR9e-N1D4&list=PL1A70C686CB3C95FC							

4.https://www.youtube.com/watch?v=7Mg0b9Gc_mc

				(Course Artici	ilation Mat	rix: (Mappin	g of COs	with POs an	d PSOs)		
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO												
CO1	3	1	1		2	1	2		3	2	1	1
CO2	3	1	1		1	2	2		3	3	2	1
CO3	3	1	1		1		2		3	2	2	1
CO4	3	1	1		1		2		3	2	1	1
CO5	3	1	1		1	2	2		3	3	1	1

Sign of Fredram coordinator	Name & Sign of Program Coordinator	Sign & Seal of HoD
-----------------------------	------------------------------------	--------------------