

Effective from Session: 2024-25									
Course Code	B030501T / MT320	Title of the Course	Group and Ring Theory & Linear Algebra	L	Т	Р	С		
Year	Third Semester Fifth								
Pre-Requisite	Knowledge of Sets, Relations and Matrices	Co-requisite	4	1	0	5			
Course Objectives	The objective of the course is to develop the skills to apply the basic knowledge of Group and Ring theory. The course will further develop understanding the concepts of Linear Algebra and their applications. The topics introduced will serve as basic tools for specialized studies in science field. After successfully completion of course, the student will able to explore subject knowledge into their respective dimensions.								

	Course Outcomes						
CO1	Liner algebra is a basic course in almost all branches of science. The objective of this course is to introduce a student to the						
	basics of linear algebra and some of its applications.						
CO2	Students will be able to know the concepts of group, ring and other related properties which will prepare the students to take up						
	further applications in the relevant fields.						
CO3	The student will use this knowledge in computer science, finance mathematics, industrial mathematics and bio mathematics.						
	After completion of this course students appreciate its interdisciplinary nature.						

Part-A Group and Ring Theory								
Unit No.	Content of Unit	Contact Hrs.	Mapped CO					
Ι	Automorphism, inner automorphism, Automorphism groups, Automorphism groups of finite and infinite cyclic groups, Characteristic subgroups, Commutator subgroup and its properties; Applications of factor groups to automorphism groups.	10	2 & 3					
II	Conjugacy classes, The class equation, <i>p</i> -groups, The Sylow theorems and consequences, Applications of Sylow theorems; Finite simple groups, Non-simplicity tests; Generalized Cayley's theorem, Index theorem, Embedding theorem and applications.	10	2 & 3					
III	Polynomial rings over commutative rings, Division algorithm and consequences, Principal ideal domains, Factorization of polynomials, Reducibility tests, Irreducibility tests, Eisenstein criterion, Unique factorization in $Z[x]$.	9	2 & 3					
IV	IV Divisibility in integral domains, Irreducibles, Primes, Unique factorization domains, Euclidean domains.							
	Part-B Mathematical Methods							
Unit No.	Content of Unit	Contact Hrs.	Mapped CO					
V	Vector spaces, Subspaces, Linear independence and dependence of vectors, Basis and Dimension, Quotient space.	10	1&3					
VI	Linear transformations, The Algebra of linear transformations, rank nullity theorem, their representation as matrices.	9	1 & 3					
VII	Linear functionals, Dual space, Characteristic values, Cayley Hamilton Theorem.	9	1&3					
VIII	Inner product spaces and norms, Cauchy-Schwarz inequality, Orthogonal vectors, Orthonormal sets and bases, Bessel's inequality for finite dimensional spaces, Gram-Schmidt orthogonalization process, Bilinear and Quadratic forms.	9	1&3					

Refere	Reference Books: Part-A						
1.	I. N. Herstein, Topics in Algebra, John Wiley & Sons.						
2.	Suggested digital plateform: NPTEL/SWAYAM/MOOCS.						
Refere	Reference Books: Part-B						
1.	Linear Algebra by K. Hoffman and R. Kunze.						
2.	Suggested digital plateform:NPTEL/SWAYAM/MOOCs						

PO-PSO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
СО				-					
CO1	3	3	2	1	3	3	2	3	3
CO2	2	2	2	1	3	2	1	2	2

CO3	3	3	2	1	2	3	2	2	2		
1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation											
	Name A	sign of Prog	ram Coordinat		Sign & Seal of HoD						

Effective from Session: 2024-25										
Course Code	B030502T / MT321 Title of the Course Number Theory & Game Theory I			L	Т	P	С			
Year	Third	Semester	Fifth		1	0	_			
Pre-Requisite	Knowledge of Sets & Co-requisite None		4		0	5				
Course Objectives	The objective of the course is to develop the skills to apply the basic knowledge of Number theory. The course will further develop understanding the concepts of Game theory and their applications. The topics introduced will serve as basic tools for specialized studies in science field. After successfully completion of course, the student will able to explore subject knowledge into their respective dimensions.									

	Course Outcomes							
CO1	Upon successful completion, students will have the knowledge and skills to solve problems in elementary number theory.							
CO2	This course provides an introduction to Game Theory. Game Theory is a mathematical framework which makes possible the analysis of the decision making process of interdependent subjects. It is aimed at explaining and predicting how individual behaves in a specific strategic situation, and therefore help improve decision making.							
CO3	A situation is strategic if the outcomes of decision problem depends n the choice of more than one person. Most decision problems in real life are strategic							
CO4	To illustrate the concept, real-world examples, case studies, and classroom experiments might be used.							

	Part-A Number Theory		
Unit No.	Content of Unit	Contact Hrs.	Mapped CO
Ι	Theory of Numbers: Divisibility; Euclidean algorithm; primes; congruences; Fermat's theorem, Euler's theorem and Wilson's theorem; Fermat's quotients and their elementary consequences; solutions of congruences; Chinese remainder theorem; Euler's phi-function.	10	1 & 4
II	Congruences: Congruences modulo powers of prime; primitive roots and theirs existence; quadratic residues; Legendre symbol, Gauss' lemma about Legendre symbol; quadratic reciprocity law; proofs of various formulations; Jacobi symbol.	9	1 & 4
III	Diophantine Equations: Solutions of $ax + by + c = 0$, $x^n + y^n = z^n$; properties of Pythagorean triples; sums of two, four and five squares; assorted examples of Diophantine equations.	9	1 & 4
IV	Generating Functions and Recurrence relations: Generating Function Models, calculating coefficient of generating functions, partitions, Exponential Generating functions, A summation Method, Recurrence Relation Models, Divide and conquer Relations, solutions of Linear, Recurrence Relations, Solutions with Generating Functions.	9	1 & 4
	Part-B Game Theory		
Unit No.	Content of Unit	Contact Hrs.	Mapped CO
V	Introduction, overview, uses of game theory, some applications and examples, and formal definitions of the normal forms, payoffs, mixed strategies, pure strategy, Nash equilibrium.	10	2
VI	Introduction, characteristics of game theory, Two-person zero-sum game, Pure and Mixed strategies, Saddle point and its existence.	10	2
VII	Fundamental Theorem of Rectangular games, Concept of Dominance and Graphical method of solving rectangular games.	9	3
VIII	Relationship between rectangular game and Linear Programming Problem, reduction of $m \times n$ game and solution of 2×2 , $2 \times s$ and $r \times s$ cases by graphical method, algebraic and linear programming solution of $m \times n$ games.	9	3 & 4

Refere	Reference Books: Part-A							
1.	Niven, I., Zuckerman, H. S. and Montegomery, H.L. An Int. of the Theory of Numbers John Wiley and sons, 2003.							
2.	Burten, D.M., Elementary Number Theory (4 th edition) Universal Book Stall, 2002.							
3.	B alakrishnan, V.K., Schaum's Outline of Theory and Problems of Combinatorics Including Concept of Graph Theory, McGraw Hill, 1995.							
4.	Balakrishnan, V.K., Introductory Discrete Mathematics, Dover Publications, 1996.							
5.	Suggested digital platform: NPTEL/SWAYAM/MOOCS.							
Refere	nce Books: Part-B							
1.	Martin Osborne, An Introduction to Game Theory, Oxford University Press, 2003.							
2.	Prajit Dutta, Strategies and Games, MIT Press, 1999. (WebsiteI: <u>http://www.ece.stevens.tech.edu/~ccomanic/ee*00c.html</u>)							

3.	Allan Mac Kenzie, Game Theory for Wireless Engineers, Synthesis lectures on Communications, 2006.

4. Suggested digital plateform:NPTEL/SWAYAM/MOOCs

PO-PSO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
СО	101	102	100	101	100	1501	1002	1500	1501
CO1	3	2	1	2	3	3	2	3	3
CO2	3	1	2	2	2	3	1	1	2
CO3	2	1	1	1	2	1	2	1	1
CO4	2	2	1	1	2	2	1	1	2

1- Low Correlation; 2- Moderate Correlati	on; 3- Substantial Correlation
Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2024-25							
Course Code	B030503T / MT322	Title of the Course Graph Theory & Discrete Mathematics		L	Т	Р	С
Year	Third	Semester	Fifth				
Pre-Requisite	Knowledge of Sets, Relations and Matrices	Co-requisite	None	4	1	0	5
Course Objectives	The objective of the course is to develop the skills to apply the basic knowledge of Graph theory. The course will further develop understanding the concepts of Discrete Mathematics and their applications. The topics introduced will serve as basic tools for specialized studies in science field. After successfully completion of course, the student will able to explore subject knowledge into their respective dimensions.						

	Course Outcomes
CO1	Upon successful completion, students will have the knowledge of various types of graphs, their terminology and applications.
CO2	After Successful completion of this course students will be able to understand the isomorphism and homomorphism of graphs. This course covers the basic concepts of graphs used in computer science and other disciplines. The topic includes path, circuits, adjacency matrix, tree, coloring. After successful completion of this course the student will have knowledge of graph coloring, color problem, vertex coloring.
CO3	After successful completion the student will have knowledge of Logic gates, Karanaugh maps and skills to proof by using truth table. After successful completion of this course the student will be able to apply the basics of the automation theory, transition function and table.
CO4	This course covers the basic concepts of discrete mathematics used in computer science, and other discipline that involve formal reasoning. The topic include logic, counting, relations, Hasse diagram and Boolean algebra. After successful completion of this course the student will have the knowledge in Mathematical reasoning, Combinatorial analysis, Discrete structures and Applications.

	Part-A Graph Theory		
Unit No.	Content of Unit	Contact Hrs.	Mapped CO
I	Introduction to graphs, basic properties of graphs, Simple graph, multi graph, graph terminology, representation of graph, Bipartite, regular, planar and connected components in graph, Euler graphs, Directed, Undirected, multi graph, mixed graph.	10	1
II	Walk and unilateral components, unicircle graphs, Hamiltonian path and circuits, Graph coloring, chromatics number, isomorphism and homomorphism of graphs, Incidence relation and degree of graph.	9	2
III	Operation of graph circuit, Path and circuits, Eulerian circuits, Hamiltonian path and cycles, Adjacency matrix, Weighted graph, Travelling salesman problem, shortest path, Dijkstra's algorithm.	9	2
IV	Tree, Binary and Spanning trees, coloring, color problems, Vertex coloring and important properties.	9	2
	Part-B Discrete Mathematics		
Unit No.	Content of Unit	Contact Hrs.	Mapped CO
V	Propositional Logic- Proposition logic, basic logic, logical connectives, truth tables, tautologies, contradiction, normal forms (conjunctive and disjunctive), modus ponens and modus tollens, validity, predicate logic, universal and existential quantification, proof by implication, converse, inverse contrapositive, contradiction, direct proof by using truth table.	10	3
VI	Relation - Definition, types of relation, domain and range of a relation, pictorial representation of relation, properties of relation, partial ordering relation, Representation of POSETS using Hasse diagram, Chains, Maximal and Minimal point, Glb, lub, Lattices and Algebraic system, basic properties, Sublattice.	10	4
VII	Boolean Algebra- Basic definitions, Sum of products and products of sums, Boolean Functions, Disjunctive normal form, Complete Disjunctive normal form, Conjugate normal form, Logic circuits, Logic networks, Design of circuits from given properties, Logic gates and Karnaugh maps.	9	4
VIII	Combinatories- Inclusion- exclusion, recurrence relations (nth order recurrence relation with constant coefficients, Homogeneous recurrence relations, Inhomogeneous recurrence relations), generating function (closed form expression, properties of G.F., solution of recurrence relations using G.F. solution of combinatorial problem using G.F.)	9	4

Refe	Reference Books: Part-A				
1.	Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science, Dover Publications, 2017.				
2.	Douglas B West, Introduction to Graph Theory, Pearson 2018.				
3.	Santanu Saha Ray, Graph Theory with Algorithm and Its Applications: In Applied Science and Technology, Springer India, 2012.				
4.	Suggested digital plateform: NPTEL/SWAYAM/MOOCS.				
Refei	rence Books: Part-B				
1.	C. L.Liu., Discrete Mathematics, Tata McGraw Hill, 1986.				
2.	Trembley and Manohar, Discrete Mathematics with computer application Tata McGraw Hill, 2008.				
3.	Kenneth H. Rosen, Discrete Mathematics and Its Applications, McGraw Hill Companies, 2012.				
4.	Suggested digital plateform: NPTEL/SWAYAM/MOOCs				

PO-PSO	PO1	PO2	PO3	PO4	PO5	5 PSO1 PSO2 PS	SO2 PSO3	PSO4	
CO	-			-					
CO1	3	2	1	1	2	2	2	3	3
CO2	2	3	2	1	3	2	2	2	3
CO3	1	2	3	1	2	1	2	3	3
CO4	3	3	3	1	3	2	2	3	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2024-25							
Course Code	B030504T / MT323	Title of the Course	Title of the Course Differential Geometry & Tensor Analysis		Т	Р	С
Year	Third	Semester	Fifth		1	0	_
Pre-Requisite	Knowledge of Geometry	Co-requisite	None	4	1	U	5
Course Objectives	The objective of the course is to develop the skills to apply the basic knowledge of Differential Geometry. The course will further develop understanding the concepts of Tensor Analysis and their applications. The topics introduced will serve as basic tools for specialized studies in science field. After successfully completion of course, the student will able to explore subject knowledge into their respective dimensions.						

	Course Outcomes
CO1	After successful completion of this course, students should be able to determine and calculate curvature of curves in different
	coordinates systems.
CO2	This course covers the Local theory of Curves, Local theory of surfaces, Geodesics, Geodesics curvature, Curvature of curves,
	on surfaces, Gaussian curvature, Normal curvature etc.
CO3	After Successful completion of this course, students should have the knowledge of tensor algebra, different types of tensors,
	Riemannian space, Ricci tensor, Einstein space and Einstein tensor etc.

	Part-A Differential Geometry		
Unit No.	Content of Unit	Contact Hrs.	Mapped CO
Ι	Local theory of curves-Space curves, Examples, Plane Curves, tangent and normal and binormal, osculating Plane, normal plane and rectifying plane, osculating circle, osculating sphere Helices, Serret-Frenet apparatus, contact between curve and surfaces, tangent surfaces, involutes and evolutes of curves, Bertrand curves, Intrinsic equations, fundamental existence theorem for space curves.	10	1
II	Local theory of Surfaces-Tangent plane, Normal, Parametric patches on surface curve of a surface, family of surfaces (one parameter). Edge of regression, rues surfaces, skew ruled surfaces and developable surfaces.	9	2
III	Metric-first fundamental form and second fundamental form and arc length, Direction coefficients, families of curves, intrinsic properties.	9	2
IV	Gauss-Bonnet theorem, curvature of curves on surfaces, Gaussian curvature, normal curvature, Meusneir's theorem, mean curvature, umbilic points, lines of curvature, Rodrigue's formula, Euler's theorem	9	1 & 2
	Part-B Tensor Analysis		
Unit No.	Content of Unit	Contact Hrs.	Mapped CO
V	Tensor Algebra: Vector spaces, the dual spaces, tensor product of vector spaces, transformation formulae, contraction, special tensors, symmetric tensor, inner product.	10	3
VI	Tensor Analysis: Contravariant and Covariant vectors and tensors, Mixed tensors, symmetric and skew-symmetric tensors, Algebra of tensors, Contraction and inner product, Quotient theorem, Reciprocal tensors, Christoffel's symbols, Law of transformation of Christoffel's symbols	10	3
VII	Gradient of scalars, Divergence of a contravariant vector, covariant vector and conservative vectors, Laplacian of an invariant, curl of a covariant vector	9	3
VIII	Riemannian space, Riemannian curvatures and their properties, Geodesics, Geodesics curvature, geometrical interpretation of curvature ensor.	9	3

Refere	Reference Books: Part-A				
1.	T. J. Willmore, An Introduction in Differential Geometry, Dover Publications, 2012.				
2.	B. O'Neill, Elementary Differential Geometry, 2 nd Ed., Academic Press, 2006.				
3.	C. E. Weatherburn, Differential Geometry of Three Dimensions, Cambridge University Press 2003.				
4.	D. J. Struik, Lectures on Classical Differential Geometry, Dover Publications, 1988.				
5.	S. Lang, Fundamentals of Differential Geometry, Springer, 1999.				
6.	B. Spain, Tensor Calculus: A Concise course, Dover Publications, 2003.				
7.	L. P. Eisenhart, An Introduction to Differential Geometry (with the use of tensor Calculus), Princeton University Press, 1940.				
8.	I. S. Sokolnikoff, Tensor Analysis, Theory and Applications to Geometry and Mechanics of Continaa, 2 nd Edition, John Wiley and Sons, 1964.				

9.	Suggested digital plateform: NPTEL/SWAYAM/MOOCS.
Refer	ence Books: Part-B
1.	Z. Ahsan, Tensors-Mathematics of Differential Geometry, PHI, 2015.
2.	David C. Kay, Tensor Analysis, Schaum's Outline Series, McGraw Hill 1988.
3.	R. S. Mishra, A Course in Tensors with Applications to Riemannian Geometry, Pothishala Pvt Ltd, 1965.
4.	Suggested digital plateform:NPTEL/SWAYAM/MOOCs

PO-PSO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
СО	101	102	105	101	105	1501	1502	1505	1501
CO1	3	3	1	2	2	3	2	2	3
CO2	3	3	1	1	2	3	2	2	2
CO3	3	3	1	2	3	3	2	2	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from Session: 2024-25											
Course Code	B010501T/PY311	Title of the Course	Classical & Statistical Mechanics	L	Т	Р	С				
Year	Third	Semester	Fifth	4	0	0	4				
Pre-Requisite	10+2 with Physics	0+2 with Physics Co-requisite Passed B.Sc. 2 nd Year									
Course Objectives		his course aims to give students the competence in the basic Classical Mechanics and Statistical Mechanics. At the end of the course he students are expected to the thorough knowledge of basic concepts of Classical Mechanics and Statistical Mechanics.									

	Course Outcomes
CO1	Understand the concepts of generalized coordinates and D'Alembert's principle.
CO2	Understand the Lagrangian dynamics and the importance of cyclic coordinates.
CO3	Comprehend the difference between Lagrangian and Hamiltonian dynamics.
CO4	Study the important features of central force and its application in Kepler's problem.
CO5	Recognize the difference between macrostate and microstate.
CO6	Comprehend the concept of ensembles.
CO7	Understand the classical and quantum statistical distribution laws.
CO8	Study the applications of statistical distribution laws

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Constrained Motion	Constraints - Definition, Classification and Examples. Degrees of Freedom and Configuration space. Constrained system, Forces of constraint and Constrained motion. Generalised coordinates, Transformation equations and Generalised notations & relations. Principle of Virtual work and D'Alembert's principle	6	CO1
2	Lagrangian Formalism	Lagrangian for conservative & non-conservative systems, Lagrange's equation of motion (no derivation), Comparison of Newtonian & Lagrangian formulations, Cyclic coordinates, and Conservation laws (with proofs and properties of kinetic energy function included). Simple examples based on Lagrangian formulation.	9	CO2
3	Hamiltonian Formalism	Phase space, Hamiltonian for conservative & non-conservative systems, Physical significance of Hamiltonian, Hamilton's equation of motion (no derivation), Comparison of Lagrangian & Hamiltonian formulations, Cyclic coordinates, and Construction of Hamiltonian from Lagrangian. Simple examples based on Hamiltonian formulation.	8	CO3
4	Central Force	Definition and properties (with prove) of central force. Equation of motion and differential equation of orbit. Bound & unbound orbits, stable & non-stable orbits, closed & open orbits and Bertrand's theorem. Motion under inverse square law of force and derivation of Kepler's laws. Laplace-Runge-Lenz vector (Runge-Lenz vector) and its applications.	7	CO4
5	Macrostate and Microstate	Macrostate, Microstate, Number of accessible microstates and Postulate of equal a priori. Phase space, Phase trajectory, Volume element in phase space, Quantisation of phase space and number of accessible microstates for free particle in 1D, free particle in 3D & harmonic oscillator in 1D.	6	CO5
6	Concept of Ensemble	Problem with time average, concept of ensemble, postulate of ensemble average and Liouville's theorem (proof included). Micro Canonical, Canonical & Grand Canonical ensembles. Thermodynamic Probability, Postulate of Equilibrium and Boltzmann Entropy relation.	6	CO6
7	Distribution Laws	Statistical Distribution Laws: Expressions for number of accessible microstates, probability & number of particles in ith state at equilibrium for Maxwell-Boltzmann, Bose-Einstein & Fermi- Dirac statistics. Comparison of statistical distribution laws and their physical significance. Canonical Distribution Law: Boltzmann's Canonical Distribution Law, Boltzmann's Partition Function, Proof of Equipartition Theorem (Law of Equipartition of energy) and relation between Partition function and Thermodynamic potentials.	10	CO7
8	Applications of Statistical Distribution Laws	Application of Bose-Einstein Distribution Law: Photons in a black body cavity and derivation of Planck's Distribution Law. Application of Fermi-Dirac Distribution Law: Free electrons in a metal, Definition of Fermi energy, Determination of Fermi energy at absolute zero, Kinetic energy of Fermi gas at absolute zero and concept of Density of States (Density of Orbitals).	8	CO8
Referen	ce Books:			
		s P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2011, 3e assical Mechanics", McGraw Hill, 2017		
	/	k, "Introduction to Classical Mechanics", McGraw Hill, 2017		
		s (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017, 1e		
		s of Statistical Mechanics", New Age International Private Limited, 2020, 2e "Statistical Mechanics", New Age International Private Limited, 2007, 2e		
	ing Source:	Statistical internations, file international i fivate Lillineu, 2007, 20		
		ssachusetts Institute of Technology, https://openlearning.mit.edu/		
		echnology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd		
3. Uttar	r Pradesh Higher Edu	cation Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx		
4. Sway	yam Prabha - DTH Cl	nannel, https://www.swayamprabha.gov.in/index.php/program/current_he/8		
[Course Articulation Matrix: (Manning of COs with POs and PSOs)		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	
CO1	3	2	-	-	-	-	3	2	-	1	2	
CO2	3	2	-	-	-	-	3	3	-	1	2	
CO3	3	2	-	-	-	-	3	3	-	2	2	
CO4	3	2	-	-	-	1	3	3	-	3	2	
CO5	3	2	-	-	-	-	3	3	-	3	2	
CO6	3	2	-	-	-	-	3	2	-	1	2	
CO7	3	2	-	-	-	-	3	3	-	1	2	
CO8	3	2	-	-	-	-	3	3	-	2	2	

Effective	from Session: 2024-2	25								
Course C	Code	B010502T/PY312	Title of the Course	Quantum Mechanics and Spectroscopy	LI	1	P	С		
Year		Third	Semester	Fifth	4 0		0	4		
Pre-Requ	uisite	10+2 with Physics	Co-requisite	Co-requisite Passed B.Sc. 2 nd Year						
Course C	Course Objectives This course aims to give students the competence in the basic Quantum Mechanics and Spectroscopy. At the end of the course the students are expected to gain the thorough knowledge of basic Quantum Mechanics and Spectroscopy.									
Course Outcomes										
CO1	CO1 Understand the significance of operator formalism in Quantum mechanics.									
CO2	Study the eigen and expectation value methods.									
CO3	Understand the basis an	d interpretation of Uncertainty	principle.							
CO4	Develop the technique	of solving Schrodinger equation	for 1D and 3D problems.							
CO5	Comprehend the succes	ss of Vector atomic model in the	theory of Atomic spectra.							
CO6	Study the different aspe	ects of spectra of Group I and II	elements.							
CO7	Study the production ar	nd applications of X-rays.								
CO8	Develop an understandi	ing of the fundamental aspects o	f Molecular spectra.							
Unit No.	Title of the Unit		Content of Unit Contact Hrs.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Operator Formalism	Operators: Review of matrix algebra, definition of an operator, special operators, operator algebra and operators corresponding to various physical-dynamical variables. Commutators: Definition, commutator algebra and commutation relations among position, linear momentum and angular momentum and energy and time. Simple problems based on commutation relations.	5	CO1
2	Eigen and Expectation Values	Eigen and Expectation Values: Eigen equation for an operator, eigen state (value) and eigen functions. Linear superposition of eigen functions and Non-degenerate and Degenerate eigen states. Expectation value pertaining to an operator and its physical interpretation. Hermitian Operators: Definition, properties and applications. Prove of the Hermitian nature of various physical-dynamical operators.	6	CO2
3	Uncertainty Principle and Schrodinger Equation	 Uncertainty Principle: Commutativity and simultaneity (theorems with proofs). Non commutativity of operators as the basis for uncertainty principle and derivation of general form of uncertainty principle through Schwarz inequality. Uncertainty principle for various conjugate pairs of physical- dynamical parameters and its applications. Schrodinger Equation: Derivation of time independent and time dependent forms, Schrodinger equation as an eigen equation, Deviation and interpretation of equation of continuity in Schrodinger representation, and Equation of motion of an operator in Schrodinger representation. 	7	CO3
4	Applications of Schrodinger Equation	 Application to 1D Problems: Infinite Square well potential (Particle in 1D box), Finite Square well potential, Potential step, Rectangular potential barrier and 1D Harmonic oscillator. Application to 3D Problems: Infinite Square well potential (Particle in a 3D box) and the Hydrogen atom (radial distribution function and radial probability included). (Direct solutions of Hermite, Associated Legendre and Associated Laguerre differential equations to be substituted). 	12	CO4
5	Vector Atomic Model	Inadequacies of Bohr and Bohr-Sommerfeld atomic models w.r.t. spectrum of Hydrogen atom (fine structure of H-alpha line). Modification due to finite mass of nucleus and Deuteron spectrum. Vector atomic model (Stern-Gerlach experiment included) and physical and geometrical interpretations of various quantum numbers for single and many valence electron systems. LS and JJ couplings, spectroscopic notation for energy states, selection rules for transition of electrons and intensity rules for spectral lines. Fine structure of H-alpha line on the basis of vector atomic model.	10	CO5
6	Spectra of Alkali and Alkaline Elements	Spectra of Alkali Elements: Screening constants for s, p, d and f orbitals; sharp, principle, diffuse and fundamental series; doublet structure of spectra and fine structure of Sodium D line. Spectra of Alkaline Elements: Singlet and triplet structure of spectra.	6	CO6
7	X – Rays and X – Ray Spectra	Nature and production, Continuous X-ray spectrum and Duane-Hunt's law, Characteristic X-ray spectrum and Mosley's law, Fine structure of Characteristic X-ray spectrum, and X-ray absorption spectrum.	7	CO7
8	Molecular Spectra	Discrete set of energies of a molecule, electronic, vibrational and rotational energies. Quantisation of vibrational energies, transition rules and pure vibrational spectra. Quantisation of rotational energies, transition rules, pure rotational spectra and determination of inter nuclear distance. Rotational-Vibrational spectra; transition rules; fundamental band and hot band; O, P, Q, R, S branches.	7	CO8
Referenc		Quantum Mechanics", Pearson Education, India, 2004, 2e		
		Quantum Mechanics", Pearson Education, India, 2004, 2e		

E. Wichmann, "Quantum Physics (In SI Units): Berkeley Physics Course Vol 4", McGraw Hill, 2017 2.

Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics - Vol. 3", Pearson Education Limited, 2012 R Murugeshan, Kiruthiga Sivaprasath, "Modern Physics", S. Chand Publishing, 2019, 18e 3.

4.

5. H.E. White, "Introduction to Atomic Spectra", McGraw Hill, 1934

C.N. Banwell, E.M. McCash, "Fundamentals of Molecular Spectroscopy", McGraw Hill, 2017, 4e 6. S.L. Gupta, V. Kumar, R.C. Sharma, "Elements of Spectroscopy", Pragati Prakashan, Meerut, 2015, 27e 7.

e-Learning Source:

MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 1

National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 2

Name and Sign of Program Coordinator

3. Uttar Pradesh Higher Education Digital Library, <u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u>

4. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

				Course A	rticulation Matr	ix: (Mapping of	COs with POs a	and PSOs)			
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO	101	102	105	104	105	100	10/	1501	1502	1505	1504
CO1	3	2	-	-	-	-	3	2	-	1	2
CO2	3	2	-	-	-	-	3	3	-	1	2
CO3	3	2	-	-	-	-	3	3	-	2	2
CO4	3	2	-	-	-	-	3	3	-	3	2
CO5	3	2	-	-	-	-	3	3	-	3	2
CO6	3	2	-	-	-	-	3	2	-	1	2
CO7	3	2	-	-	-	-	3	3	-	1	2
CO8	3	2	-	-	-	-	3	3	-	2	2
		1	- Low Correlation	on: 2- Moderate	Correlation: 3-	Substantial Cor	relation				

Effective from Session: 2024-25										
Course Code		B010503P/PY313	Title of the Course	le of the Course Demonstrative Aspects of Optics & Lasers				С		
Year		Third	Semester	Fifth	0	0	4	2		
Pre-Requisite		10+2 with Physics	Co-requisite	Passed B.Sc. 2 nd Year						
Course (Objectives	The purpose of this undergraduate course is to impart practical knowledge/measurements in Optics through different experiments related to its theoretical course.								
			Course	Outcomes						
CO1	To understand the a	pplication of Fresnel'	s Biprism in determinat	ion of Wavelength of Light and thickness of a thin sh	eet.					
CO2	To understand the a	pplication of Newton ³	's Ring in determination	of Wavelength of Light and Refractive Index of a Ta	ranspa	rent Lic	luid.			

CO3 To find the Resolving Power of a grating and to understand its application in determination of wavelength of different colours of light.

CO4 To find the dispersive power of a prism and refractive index of its material using spectrometer.

CO5 To find the specific resistance of sugar solution using polarimeter and wavelength of Laser light using single slit diffraction.

* A student has to perform at least 7 experiments from the Offline Experiment List and 3 from the Online Virtual Lab Experiment List / Link.

Experiment No.	Title of the Experiment	Content of Unit (*Offline)	Contact Hrs.	Mappe d CO
1	Wavelength by Fresnel's Biprism	Fresnel Biprism: Wavelength of sodium light	4	CO1
2	Thickness by Fresnel's Biprism	Fresnel Biprism: Thickness of mica sheet	4	CO1
3	Wavelength by Newton's Ring	Newton's Rings: Wavelength of sodium light	4	CO2
4	Refractive Index by Newton's Ring	Newton's Rings: Refractive index of liquid	4	CO2
5	Resolving power of Grating	Plane Diffraction Grating: Resolving power	4	CO3
6	Wavelength by Diffraction Grating	Plane Diffraction Grating: Spectrum of mercury light	4	CO3
7	Refractive index of Prism	Spectrometer: Refractive index of the material of a prism using sodium light	4	CO4
8	Dispersive Power of Prism	Spectrometer: Dispersive power of the material of a prism using mercury light	4	CO4
9	Specific Rotation by Polarimeter	Polarimeter: Specific rotation of sugar solution	4	CO5
10	Wavelength of Laser Light	Wavelength of Laser light using diffraction by single slit	4	CO5
Experiment No.	Title of the Experiment	Content of Unit (*Online Virtual Lab)	Contact Hrs.	Mappe d CO
1	Michelson's Interferometer - Working	Michelson's Interferometer	4	CO1
2	Wavelength by Michelson's Interferometer	Michelson's Interferometer: Wavelength of laser beam	4	CO4
3	Wavelength by Newton's Ring	Newton's Rings: Wavelength of light	4	CO1
4	Refractive Index by Newton's Ring	Newton's Rings: Refractive index of liquid	4	CO4
5	Brewster's Law	Brewster's angle determination	4	CO4
6	Laser Beam Divergence	Laser beam divergence and spot size	4	CO2
7	Refractive index of Prism	Spectrometer: Refractive index of the material of a prism	4	CO4
8	Dispersive Power of Prism	Spectrometer: Dispersive power of a prism	4	CO2
9	Cauchy's Constant	Spectrometer: Determination of Cauchy's constants	4	
10	Wavelength by Diffraction Grating	Diffraction Grating	4	
Reference Boo				
		r Students", Methuen & Co., Ltd., London, 1962, 9e		
-	B. Mallick, "Engineering Practical Physics",	· · ·		
-	•	rishna Prakashan Media (Pvt.) Ltd., Meerut, 2019		
	V. Kumar, "Practical Physics", Pragati Prakas	han, Meerut, 2014, 2e		
e-Learning Sou				
	s at Amrita Vishwa Vidyapeetham, https://vla			
	s at Amrita Vishwa Vidyapeetham, <u>https://vla</u>			
3. Digital Plat	forms /Web Links of other virtual labs may b	e suggested / added to this lists by individual Universities.		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	
CO1	2						3	3			3	
CO2	2						3	3			3	
CO3	3						2	3			3	
CO4	2						3	3			3	
CO5	3						2	3		2	3	

Name & Sign of Program Coordinator	
------------------------------------	--

Effective from Sessi	on: 2024-25							
Course Code	B070501T/CS365	Title of the Course	Analysis of Algorithms and Data Structures	L	Т	Р	С	
Year	Third	Semester	Fifth					
Pre-Requisite	Mathematics in class 12 th and Computer Fundamental, and C++ and Object OrientedProgramming	Co- requisite	None	4	1	0	5	
Course Objectives	course, students will be able to Demonstrate a familiarity with m	nis course introduces students to the analysis and design of computer algorithms. Upon completion of this purse, students will be able to do the following: Analyze the asymptotic performance of algorithms. emonstrate a familiarity with major algorithms and data structures. Apply important algorithmic design aradigms and methods of analysis. Synthesize efficient algorithms in common engineering design situation.						

Course Outcomes

		Course Outcomes
С	01	Understand that various problem solving categories exist such as; iterative technique, divide and conquer, dynamic
		programming, greedy algorithms, and understand various searching and sorting algorithms
С	02	Employ a deep knowledge of various data structures when constructing a program.
С	03	Design and construct simple object-oriented software with an appreciation for dataabstraction and information hiding.
С	04	Effectively use software development tools including libraries, compilers, editors, linkers and debuggers to write and
		troubleshoot programs.

Unit No.	Content of Unit	Contact Hrs.	Mapped CO
I	Introduction : Basic Design and Analysis techniques of Algorithms, time and space complexity, Correctness of Algorithm, Algorithm Design Techniques: Iterative techniques, Divide and Conquer, Dynamic Programming, Greedy Algorithms.	7	2 & 3
п	Sorting Techniques : Elementary sorting techniques-BubbleSort, Insertion Sort, Merge Sort, Advanced Sorting techniques-Heap Sort, Quick Sort, Sorting in Linear Time-Bucket Sort, Radix Sort and Count Sort	8	4 & 3
ш	Searching Techniques and Complexity Analysis:: Linear and Binary search, Medians & Order Statistics.	7	2 & 3
IV	Arrays Arrays: Single and Multi-dimensional Arrays, Sparse Matrices;	7	2 & 3
V	Stacks and Queues : Implementing stack using array and linked list, Prefix, Infix and Postfix expressions, Utility and conversion of these expressions from one to another; Array and Linked representation of Queue, De-queue, Priority Queues	8	4 & 3
VI	Linked Lists: Singly, Doubly and Circular Lists, representation of Stack and Queue as Linked Lists.	8	1&3
VII	Recursion : Developing Recursive Definition of Simple Problems and their implementation; Advantages and Limitations of Recursion;	7	1 & 4
VIII	Trees : Introduction to Tree as a data structure; Binary Trees, Binary Search Tree, (Creation, and Traversals of Binary Search Trees)	8	1 & 3

Reference Books: Part-A

Cormen T.H., Leiserson Charles E., Rivest Ronald L., Stein Clifford, Introductionto Algorithms, PHI Learning Pvt. Ltd., 2009, 3rd Edition.

Basse Sara & A.V. Gelder, Computer Algorithm: Introduction to Design and Analysis, Pearson, 2000, 3rd Editionn

Drozdek Adam, "Data Structures and algorithm in C++", Cengage Learning, 2012, Third Edition.

Tenenbaum Aaron M., Augenstein Moshe J., Langsam Yedidyah, "Data StructuresUsing C and C++, PHI, 2009, Second edition.

PO-PSO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO									
CO1	3	3	2	1	3	3	2	3	3
CO2	2	2	2	1	3	2	1	2	2
CO3	3	3	2	1	2	3	2	2	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation					
Name & Sign of Program Coordinator	Sign & Seal of HoD				

Effective from Session: 2024-25										
Course Code	B070502T/CS366	Title of the Course	Soft Computing		Т	Р	С			
Year	Third	Semester	Fifth				_			
Pre-Requisite	Mathematics in class 12 th	Co- requisite	None		1	0	5			
Course Objectives	apply them for practical applications time problems. He can appropriate	boon the completion of this course the student will have the knowledge of soft computing concepts and he can ply them for practical applications. He would be able to choose and design suitable Neural Network for real ne problems. He can appropriately use fuzzy rules and reasoning to develop decision making and expert stems. He would know the importance of optimization techniques and genetic programming.								

	Course Outcomes						
CO1	Understand that various problem solving categories exist such as; iterative technique, divide and conquer, dynamic						
	programming, greedy algorithms, and understand various searching and sorting algorithms						
CO2	O2 Employ a deep knowledge of various data structures when constructing a program.						
CO3	Design and construct simple object-oriented software with an appreciation for dataabstraction and information hiding.						
CO4	Effectively use software development tools including libraries, compilers, editors, linkers and debuggers to write and						
	troubleshoot programs.						

Unit No.	Content of Unit	Contact Hrs.	Mapped CO
I	Introduction To Neural Networks : Neural Networks Neuron, Nerve Structure And Synapse, Artificial Neuron AndIts Model, Activation Functions.	7	2 & 3
п	Neural Network Architecture : Single Layer And MultilayerFeed Forward Networks, Recurrent Networks. Perception And Convergence Rule.Supervised Learning Network& Unsupervised Learning Network.	8	4 & 3
ш	Back Propogation Networks-I : Perceptron Model, Solution, Single Layer, Multilayer Perception Model;	7	2 & 3
IV	Back Propogation Networks -II: Back Propogation Learning Methods, Effect Of Learning Rule Co- Efficient ;Back Propagation Algorithm, Applications.	8	2 & 3
V	Fuzzy Logic Introduction-I : Basic Concepts Of Fuzzy Logic, Fuzzy Sets And Crisp Sets, Fuzzy Set Theory AndOperations, Properties Of Fuzzy Sets	7	4 & 3
VI	Fuzzy Logic Introduction-II: Fuzzy And Crisp Relations, Fuzzy To Crisp Conversion, Membership Functions, Interference In Fuzzy Logic, Fuzzy If-Then Rules, Fuzzyfications&Defuzzificataions.	8	1 & 3
VII	Genetic Algorithm-I: Basic Concepts, Working Principle, Procedures Of GA, Flow Chart Of GA	7	1 & 4
VIII	Genetic Algorithm-II: Genetic Representations, (Encoding), Genetic Operators, Mutation, Generational Cycle.	8	1 & 3

Reference Books: Part-A

S. Rajsekaran & G.A. VijayalakshmiPai, "Neural Networks, Fuzzy Logic and GeneticAlgorithm: Synthesis and Applications" Prentice Hall of India,2003 Anderson, James, "Introduction to Neural Networks", PHI Publication, Delhi, India N.P.Padhy,"Artificial Intelligence and Intelligent Systems" Oxford University Press, USA,2005.

Simon Haykin,"Neural Netowrks and Learning Machines "Prentice Hall of India, 2005, Third Edition.

PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
C01	3	3	2	1	3	3	2	3	3
CO2	2	2	2	1	3	2	1	2	2
CO3	3	3	2	1	2	3	2	2	2
CO4	3	3	2	1	2	3	2	2	2

1- Low Correlation; 2- Moderate Correlation; 3- Sub	bstantial Correlation
---	-----------------------

Name & Sign of Program CoordinatorSign & Seal of HoD
--

Effective from Session: 2024-25								
Course Code	B070503P/CS367	Title of the Course	Lab on Algorithm and Data Structures with C++	L	Т	Р	C	
Year	Third	Semester	Fifth	0	0	4	2	
Pre-Requisite	10+2 with Mathematics	Co-requisite						
Course Objectives								

	Course Outcomes						
CO	1						
	Optimize the solution with respect to time complexity & memory usage						
CO	2 Assess how the choice of data structures and algorithm design methods impacts theperformance of programs.						
CO	3 Choose the appropriate data structure and algorithm design method for a specified application.						
CO	4 Solve problems using data structures such as linear lists, stacks, queues, binary trees, binary search trees and writing programs						
	for these solutions						

Experiment No.	Title of the Experiment	Content of Experiment	Contact Hrs.	Mapped CO			
1	 Write a program that uses functions to perform the following: Create a singly linked list of integers. Delete a given integer from the above linked list. Display the contents of the above list after deletion. 						
2	2 Write a program that uses functions to perform the following: Create a doubly linked list of integers. Delete a given integer from the above doubly linked list. Display the contents of the above list after deletion.						
3		Write a program that uses stack operations to convert a given infix expression into itspostfix Equivalent, implement the stack using an array.					
4		2	2				
5		2	3				
6	Binary search tree recursively in Postorder. 6 Write a program that uses functions to perform the following: Create a binary search tree of integers. Traverse the above Binary search tree non recursively in inorder.						
7	4	4					
8		Write program for implementing the following sorting methods to arrange a list of integers in ascending order: Quick sort Selection sort	4	4			
9		Write program to implement Insertion Sort (The program should report the number of comparisons)	4	3			
10		Write program implement Merge Sort(The program should report the number of comparisons)	4	4			
11	Write program implement Heap Sort (The program should report the number of comparisons)			3			
12		Write program implement Randomized Quick sort (The program should report number of comparisons)	2	2			
		Write program for creation and traversal of Binary Search Tree.	2	4			

2. Muirhead, R.J. (1982): Aspects of Multivariate Statistical Theory, John Wiley.Kshirsagar, A.M. (1972): Multivariate Analysis, 1stEdn. Marcel Dekker.

3. Gibbons, J. D. and Chakraborty, S (2003): Nonparametric Statistical Inference. 4th Edition.Marcel Dekker, CRC

e-Learning Source:

Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3						3	3	3	3	3	3
CO2	3						2	3	2	3	3	2
CO3	3						3	3	2	2	2	1
CO4	3						2	3	2	2	3	2
CO5	3						2	3	3	3	3	3
	1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation											
	Name & Sign of Program Coordinator								Sig	n & Seal of	HoD	

Effective from Session: 2024-25								
Course Code	B030502T / MT324	Title of the Course	L	Т	Р	С		
Year	Third	Semester	Sixth					
Pre-Requisite	Knowledge of sets, limit, continuity & Co-requisite None		None	3	1	0	4	
Course Objectives	course will further dev topics introduced will	The objective of the course is to develop the skills to apply the basic knowledge of Metric Spaces. The course will further develop understanding the concepts of Complex Analysis and their applications. The topics introduced will serve as basic tools for specialized studies in science field. After successfully completion of course, the student will able to explore subject knowledge into their respective dimensions.						

	Course Outcomes						
CO1	The course is aimed at exposing the students to foundations of analysis which will be useful in understanding various physical						
	phenomena and gives the student the foundation in mathematics.						
	After completion of this course the student will have rigorous and deeper understanding of fundamental concepts in						
CO2	Mathematics. This will be helpful to the student in understanding pure mathematics and in research.						
CO3	Students will be able to know the concepts of metric space, basic concepts and developments of complex analysis which will						
	prepare the students to take up further applications in the relevant fields.						

	Part-A Metric Spaces					
Unit No.	Content of Unit	Contact Hrs.	Mapped CO			
Ι	Basic Concepts: Metric spaces: Definition and examples, Sequences in metric spaces, Cauchy sequences, Complete metric space.	8	1 & 3			
II	Topology of Metric Spaces: Open and closed ball, Neighborhood, Open set, Interior of a set, limit point of a set, derived set, closed set, closure of a set, diameter of a set, Cantor's theorem, Subspaces, Dense set.	8	1&3			
III	Continuity & Uniform Continuity in Metric Spaces: Continuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphism, Contraction mapping, Banach fixed point theorem.	7	1 & 3			
IV	Connectedness and Compactness: Connectedness, Connected subsets of real numbers,					
	Part-B Complex Analysis					
Unit No.	Content of Unit	Contact Hrs.	Mapped CO			
V	Analytic Functions and Cauchy-Riemann Equations: Functions of complex variable, Mappings; Mappings by the exponential function, Limits, Theorems on limits, Limits involving the point at infinity, Continuity, Derivatives, Differentiation formulae, Cauchy-Riemann equations, Sufficient conditions for differentiability; Analytic functions and their examples.	8	1 & 2			
VI	Elementary Functions and Integrals: Exponential function, Logarithmic function, Branches and derivatives of logarithms, Trigonometric function, Derivatives of functions, Definite integrals of functions, Contours, Contour integrals and its examples, Upper bounds for moduli of contour integrals.	8	1 & 2			
VII	Cauchy's Theorems and Fundamental Theorem of Algebra: Antiderivatives, Proof of antiderivative theorem, Cauchy-Goursat theorem, Cauchy integral formula; An extension of Cauchy integral formula, Consequences of Cauchy integral formula, Liouville's theorem and the fundamental theorem of algebra.	7	1 & 2			
VIII	Series and Residues: Convergence of sequences and series, Taylor series and its examples; Laurent series and its examples, Absolute and uniform convergence of power series, Uniqueness of series representations of power series, Isolated singular points, Residues, Cauchy's residue theorem, residue at infinity; Types of isolated singular points, Residues at poles and its examples.	7	1 & 2			

Refere	Reference Books: Part-A					
1.	Mathematical Analysis by Shanti Narain.					
2.	Shirali, Satish & Vasudeva, H. L. (2009). Metric Spaces, Springer, First Indian Print.					
3.	Kumaresan, S. (2014). Topology of Metric Spaces (2 nd ed.). Narosa Publishing House. New Delhi.					
4.	Simmons, G. F. (2004). Introduction to Topology and Modern Analysis. Tata McGraw Hill. New Delhi.					

5.	Suggested digital plateform: NPTEL/SWAYAM/MOOCS.
Refere	ence Books: Part-B
1.	Function of Complex Variable by Shanti Narain.
2.	Complex variable and applications by Brown & Churchill.
3.	Suggested digital plateform: NPTEL/SWAYAM/MOOCs

PO-PSO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
СО	101	102	100	101	100	1501	1002	1500	1501
CO1	3	3	2	1	3	3	3	2	3
CO2	3	3	2	1	3	3	2	2	3
CO3	3	3	3	1	3	3	3	3	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation				
Name & Sign of Program Coordinator	Sign & Seal of HoD			

Effective from Session: 2024-25								
Course Code	B030602T / MT325	Title of the Course	Numerical Analysis & Operation Research	L	Т	Р	С	
Year	Third	Semester	Sixth					
Pre-Requisite	Knowledge of errors and system of linear equations.		3	1	0	4		
Course Objectives	The objective of the course is to develop the skills to apply the basic knowledge of Numerical Analysis. The course will further develop understanding the concepts of Operation Research and their applications. The topics introduced will serve as basic tools for specialized studies in science field. After successfully completion of course, the student will able to explore subject knowledge into their respective dimensions.							

	Course Outcomes
CO1	The aim of this course is to teach the student the application of various numerical technique for variety of problems occurring in
	daily life. At the end of the course the student will be able to understand the basic concept of Numerical Analysis and to solve
	algebraic and differential equation.
CO2	The main outcome will be that students will be able to handle problems and finding approximated solution. Later he can
	opt for advance course in Numerical Analysis in higher Mathematics.
CO3	The student will be able to solve various problems based on linear programming. After successful completion of this paper
	will enable the students to apply the basic concepts of operations research.

Part-A										
Numerical Analysis										
Unit No.	Content of Unit	Contact Hrs.	Mapped CO							
I	Solution of equations: bisection, Secant, Regular Falsi, Newton Raphson's method, Newton's method for multiple roots, Interpolation, Lagrange and Hermite interpolation, Difference schemes, Divided differences, Interpolation formula using differences.	8	1 & 2							
п	Numerical differentiation, Numerical Quadrature: Newton Cotes Formulas, Gaussian Quadrature Formulas, System of Linear equations: Direct method for solving systems of linear equations (Gauss elimination, LU Decomposition, Cholesky Decomposition), Iterative methods (Jacobi, Gauss Seidel, Relaxation methods). The Algebraic Eigen value problem: Jacobi's method, Givens method,Power method.	8	1&2							
III	Numerical solution of Ordinary differential equations: Euler method, single step methods, Runge-Kutta method, Multi-step methods: Milne-Simpson method, Types of approximation: Last Square polynomial approximation, Uniform approximation, Chebyshev polynomial approximation.	7	1&2							
IV	Difference Equations and their solutions, Shooting method and Difference equation method for solving Linear second order differential equation with boundary conditions of first, second and third type.	7	1 & 2							
	Part-B Operation Research									
Unit No.	Content of Unit	Contact	Mapped							

Unit No.	Content of Unit	Hrs.	CO
	Introduction, Linear programming problems, statement and formation of general linear	8	2
	programming problems, graphical method, slack and surplus variables, standard and matrix forms		3
V	of linear programming problem, basic feasible solution.		
	Convex sets, fundamental theorem of linear programming, basic solution, Simplex method,	8	3
VI	introduction to artificial variables, two phase method Big-M method and their comparison.		5
VII	Resolution of degeneracy, duality in linear programming problems, primal dual relationships, revised simplex method, sensitivity analysis.	7	3
VIII	Transportation problems, assignment problems.	7	3

Refer	rence Books: Part-A						
1.	Numerical Methods for Engineering and scientific computation by M. K. Jain, S.R.K. Iyengar & R.K. Jain.						
1.	Introductory methods of Numerical Analysis by S. S. Sastry						
2.	Suggested digital plateform: NPTEL/SWAYAM/MOOCS.						
Refer	Reference Books: Part-B						
1.	Taha, Hamdy H, "Opearations Research- An Introduction ", Pearson Education.						

2.	Gupta, Prem Kumar, Initials, " Operations Research", Chand (S) & Co Ltd, India.
3.	Hillier Frederick S and Lieberman Gerald J., "Operations Research", McGraw Hill Publication
4.	Winston Wayne L., "Operations Research: Applications and Algorithms", Cengage Learning, 4th Edition.
5.	Hira D.S. and Gupta Prem Kumar, "Problems in Operations Research: Principles and Solutions", S Chand & Co Ltd
6.	Kalavathy S., "Operations Research", S Chand.
7.	Suggested digital plateform:NPTEL/SWAYAM/MOOCs.

PO-PSO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
СО	101	102	100	101	100	1501	1002	1500	1501
CO1	3	3	3	1	2	2	3	3	3
CO2	3	3	3	1	2	2	3	3	3
CO3	2	2	3	1	2	2	2	3	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation	on
---	----

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from Session: 2024-25									
Course Code	B030603P / MT326	Title of the Course	Practical Using Mathematica/MATLAB	L	Т	Р	С		
Year	ear Third		Sixth		0				
Pre-Requisite	Knowledge of numerical analysis.	OI Co-requisite None		U	U	4	4		
Course Objectives	The main objective of the course is to equip the student to solve the transcendental and algebraic equations, system of linear equations, ordinary differential equations, Interpolation, Numerical Integration, Method of finding Eigenvalue by Power method (up to 4×4), Fitting a Polynomial Function (up to third degree).								

Unit No.	Topics	No. of Lectures
I	Practical / Lab work to be performed in Computer Lab. List of the practicals to be done using computer algebra software (CAS), for example R/Python/Mathematica/MATLAB/Maple/Maxima/Scilab etc 1. Solution of transcendental and algebraic equations by	
	i) Bisection method	
	ii) Newton Raphson method (Simple root, multiple roots, complex roots).	
	iii) Secant method.	
	iv) Regula Falsi method.2. Solution of system of linear equations	
	i) LU decomposition method	
	ii) Gaussian elimination method	
	iii) Gauss-Jacobi method	
	iV) Gauss-Seidel method 3. Interpolation	
	i) Lagrange Interpolation	
	ii) Newton's forward, backward and divided difference interpolations4. Numerical Integration	
	i) Trapezoidal Rule	
	ii) Simpson's one third rule	
	iii) Weddle's Rule	
	iv) Gauss Quadrature	
	5. Method of finding Eigenvalue by Power method (up to 4×4)	
	6. Fitting a Polynomial Function (up to third degree)	
	7. Solution of ordinary differential equations	
	i) Euler method	
	ii) Modified Euler method	
	iii) Runge Kutta method (order 4) The method of successive approximations (Picard)	

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD

Image: Crystal Structure Lattice Translation vectors. Primitive and non-primitive and conspirative and space graps. Dand 3DB argues 120 and 3DB argues 120 and 3DB argues 120 and 3DB argues 120 and 3DB argues 130 argues 130 argues 130 argues 130 argues 130		from Session: 20									-	-		
Pre-Regulation 10-2 with Physics Concervation Passed BAS, 2 ⁺ , Year Image: Name of the concervation of the conconcervatio concervation of the concervatio concervation of the		Code						and Nuclear I	hysics					C 4
Construction concreted to gain the interrupt Numberly of Allo State and Nuclear Physics. Construction Understand the crystal geometry w.t.f symmetry operations. Construction Understand the crystal geometry w.t.f symmetry operations. Construction Understand the crystal geometry w.t.f symmetry operations. Construction Understand the crystal geometry w.t.f symmetry operations. Understand the former and the concept of response of the concept of response response of the concept of response of the concept of		uisite	10+2	with Physics	Co-requ	isite	Passed B.Sc					_		
Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comp	Course O	Objectives							Nuclear Physics.	At the end of t	he cou	irse the s	tudent	s are
Control Linderstand the crystal generative vector and production. Control Compression with the concept of activitical lattice. Control The Electron and Band Beerines in understanding the crystal properties. Control The Electron and Band Beerines in understanding the crystal properties. Control The Electron and Band Beerines in understanding the crystal properties. Control The Electron and Band Beerines in understanding the crystal properties. Control The Electron and applications of nones. Control The Electron and applications of nones. Control The Clystal The Electron and applications of nones. Control The Clystal The Clystal structure. Lattice translation vectors, Printitive and non-printitive cells. Symmetry operations, Point group and Space group. 2D and 3D Brivial lattice. Planes and Clystal and Clystal transformed diffusion methods. Lane, Routing crystal and Powder Clystal. 7 C Chystal The Index. Simple group and Space group. 2D and 3D Brivial Structure factor. Chystal Rindle Beerin Structure. Anonic Print Plane PCC. Donone Club. Zime. Science 2D and Clystal methods. Lane, Routing crystal and Powder Plane PCC. Donone Club. Zime. Plane PCC. Donology Club. 2D Plane														
CODe Only Survey cover of X ray diffraction and the concept of respinged lattice. University of the structure of the set of	CO1	Understand the	crystal geom	etrv wrt symn	netry operation		Outcomes							
COM Recipitive the importance of free Flaction and Band Indexis we accoss. Comparison of the Visition and Recipitar excitors. Content of the Unit Selection and Recipitar excitors. Content of the Unit Selection and Recipitar excitors. Content of the Unit Selection and Recipitar excitors. Content of Unit Selection Recipitar excitors. Content of Unit Selection Recipitar excitors. Content of Unit Selection Recipitar excitors. Content of Decipitar Excitors.							lattice.							
Construction for nuclear forces and noisearies decays. Comprehend the vortiking and applications of nuclear accelerators and detectors. Comprehend the vortiking and applications of nuclear accelerators and detectors. Comprehend the vortiking and applications of nuclear accelerators and detectors. Comprehend the vortiking and applications of nuclear accelerators and detectors. Contact III. Nuclear the class factor of nuclear accelerators and detectors. Contact III. Nuclear the class factors. Forth group and Space group. Data DB Darvaia lation. Calues. Calues Calues, Social and Posteria latics. Contact III. Contact IIII. <		<i>.</i>				· · · ·	11 .	1						
Constraint the importance of models models and moder maxims. Constraint of the c							iding the crysta	il properties.						
Content the classification and properties of basic building blacks of nature. Content of Unit Content on Unit Content Content on Unit Conten		Understand the	importance o	f nuclear model	ls and nuclear 1	reactions.								
Unit No. Title of the Unit Content of Unit Content of Unit Content of Unit Content of Unit Mage 1 Crystal Structure Lattice, Basis and Crysul structure, Lattice translation vectors, Printitive and non-printive calls, Symmetry on Miller indice, Sample crysul structures - HCP and FCC, Damond, Cubic, Zanc Sulphide, Softum 7 C 2 Crystal Diffraction Amount of Content of Unit 7 C 3 Crystal Diffraction and Bragg's law. Experimental diffraction methods - Law, Roating crysul and Powder methods. Derivation of Scatteed wave amplitude. Regineed latice, Neifraction and between Direct and Resipneed latice. Diffraction Form fator and Units. To Content, Magille, and Units, Content, Regineed latice to SC, PCC and PCC latices, Administro Form fator and Units and Distal and Regulation to the SC, PCC and PCC latices, Administro Form fator and Units and Distal and Regulation to the SC, PCC and PCC latices, Administro Form fator and Units. To Administro and Acoustical and Optical branches (qualitative reatment). Qualitative description of Photoms in solids. Lattice vibrations and administro lattice vibrations of Image more and units. Interview Provide Mathematice, and Acoustical and Optical branches (qualitative reatment). Qualitative description of Photoms in solids. Lattice vibration and administro lattice vibrations. Nuclear Schull and Contexperimental and Contexperiments. Schull and Contexperimental Acoustical and Contexperiments. Nuclear athirty, Nuclear Schull and Contexperiments. Nuclear athirty, Nuclear Schull and Contexperiments. Nuclear athirty, Nuclear Schull and Contexperiments. Nuclear athirter and administro lattranet and administro lattice														
No. Unite of the Curi Content of Unit Mark Mark <t< th=""><th></th><th>Understand the</th><th>ciassification</th><th>and properties</th><th>of basic building</th><th>ing DIOCKS OF Ha</th><th>ture.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		Understand the	ciassification	and properties	of basic building	ing DIOCKS OF Ha	ture.							
Image: state structure in the state of the stat		Title of the Un	it			Cont	tent of Unit							opea O
2 Crystal Diffraction X-ray diffraction and Brag's law. Experimental diffraction methods - Law. Rotainer crystal and Powder hetween Direct and Reciprocal latice. Diffraction conditions, Evald's method and Brilloum zones. Reciprocal between Direct and Reciprocal latice. Diffraction conditions, Evald's method and Brilloum zones. Reciprocal between Direct and Reciprocal latice. Diffraction conditions, Evald's method and Brilloum zones. Reciprocal between Direct and Reciprocal latice. Diffraction conditions, Evald's method and Brilloum zones. Reciprocal between Direct and Reciprocal latice. Diffraction conditions, Evald's method and Brilloum zones. Reciprocal between Direct and Reciprocal latice. Diffraction conditions, Evald's method and Brilloum zones. Reciprocal constraints and the second constraint of the second constraint. 7 C 4 Lattice Lattice Vibrations: Lattice vibrations for linear mono and di atomic chams. Depension relations and the capacity. Datong-Parit's law and Einstein's theory of Lattice hast capacity. 7 C 4 Lattice Deletron Theory: Fermi energy, Qualitative description of Phonons in solids. Lattice heat capacity. Datong-Parit's law and Einstein's theory of Lattice heat capacity. 9 C 5 Nuclear Kordes Bad Disort: Origin of Solid and Optice and Close and Close and Close and Close and Close and theory. 9 C 6 Ind Nuclear Medicartiv Decryst: Noted and Ball effect in metals. Bad disortive metals. 9 C 7 Nuclear Models. Indeletron capute, Solid and Optice a	1		operation and M	ons, Point grou	p and Space gro imple crystal	oup. 2D and 3D structures - H	Bravais lattice	e. Parameters o	f cubic lattices.	Lattice planes		7	C	D1
3 Crystal Binding Classification of Crystals on the Basis of Bonding - Jonic, Covalent, Menläic, van der Waals Molecular and Hydrogen bondel. Crystals of interaction, Equilibrium lattice constant, Cohesive energy and Compressibility and Bulk modulus. Jonic 7 C 4 Lattice February Line Cohesive energy. Madelung energy and evaluation of Madelung constant. 7 C 4 Lattice Vibrations Lattice vibrations: Lattice vibrations for linear mone and di atomic chains, Dispersion relations and Accoustical and Optical branches (qualitative tratmation) (Qualitative description of Bonoms in solds. Lattice Precedenci Drugority, Dulong-Petit's law and Einstein's theory of Lattice heat capacity of conduction electrons, Paramagnetic encertain theorem, Scherker, Paramagnetic dipole susceptibility of conduction electrons, Paramagnetic dipole and Theory: Origin of band theory, Qualitative tratmatine, Richaid, Panney model, Effective mass of an electron and Concept of Holes and Classification of solids on the basis of and theory. 9 Q 5 Nuclear Forces Nuclear Forces: General characteristic of nuclear force and Deuteron ground state properties. Radioactive Drugors: Nuclear stability, basis ideas about beat mains decay, del dacay, gamma decay and deciron capture, findamental laws of andiactive distature reaction and Pandiactive distature reaction. Revort or molectra for opticaction of maing annumbers included and Nuclear 9 Q 7 Accelerators and Detectors and Detectors: Beht's notation, types of nuclear reaction, Conservation laws, Mesons, Baryons and Repaire andiactic distability or conotester of propotocian diact	2		X-ray method betwee	diffraction and ls. Derivation on Direct and Re	Bragg's law. of scattered wa eciprocal lattice	Experimental on two amplitude. e. Diffraction co	Reciprocal lat onditions, Ewa	tice, Reciproca ld's method an	l lattice vectors d Brillouin zone	and relation		7	C	02
4 Accustical and Optical branches (qualitative teatment). Qualitative description of Phonons in solids. Lattice heat capacity. Optical branches (qualitative teatment). Qualitative description of Phonons in solids. Lattice heat capacity (conduction electrons and Half effect in metals. Band Theory: Orgin of band theory, Qualitative idea of Bloch theorem, Kronig-Penney model, Effective metals and a diffection and Clancer photos and Half effect in metals. Band Theory: Orgin of band theory, Qualitative idea of Bloch theorem, Kronig-Penney model, Effective metals of an electron and Concerpt of Holes and Classification of solids on the basis of band theory. Succers forces: General characteristic of nuclear force and Deuteron ground state properties. Nuclear Forces: General characteristic of nuclear force and Deuteron ground state properties of Nuclears: Ender and electron capture, fundamental laws of nadoactive distingminant and radioactive series. 9 C 6 Nuclear Modes and Nuclear Modes and Nuclear Forces: General characteristic of nuclear force and Deuteron ground state properties of Nuclears: Ender and one theory estimates formula. Single particle shell model (the level scheme in the context) of reproduction of magic numbers included). 9 C 7 Nuclear Modes Relation and Photosine State's noniton. types of nuclear raccino. Conservation laws, Cross-section of nuclear raccino. Theory of nuclear fission (qualitative). Nuclear reactions of Nuclear Relation. 9 C 8 Elementary Particles bade on sutrinsic-spin. mass, interaction and lifetime. Emails of elementary. Theory, working and applications of GM counter, Semiconductor detector, Scintillation counter and Baryon Resonanes. Conservation laws for nusseverery, linear momontum, angular momentum, ele	3	Crystal Bindin	g Classif Hydrog interact crystals	ication of Cryst gen bonded. Cr tion, Equilibriu s, Cohesive energy	als on the Basi ystals of inert m lattice con rgy, Madelung	is of Bonding - gases, Attract stant, Cohesive energy and eva	· Ionic, Covale tive interaction e energy and luation of Mac	nt, Metallic, va 1 (van der Wa Compressibilit lelung constant	n der Waals (Maals - London) a y and Bulk m	nd Repulsive odulus. Ionic		7	C	D3
Succear Forces and Radioactive Drcays General Properties of Nucleurs: Mass, binding energy, radii, density, angular momentum, magnetic dipole moment vector and electric and quadrupole moment tensor. 9 C 6 Nuclear Models and Nuclear Forces: General characteristic of nuclear force and Deuteron ground state properties. Radioactive Series. 9 C 6 Nuclear Models and Nuclear Reactions Nuclear Models: Liquid drop model and Bethe-Weizsacker mass formula. Single particle shell model (the level scheme in the context of reproduction of magic numbers included). Nuclear Reactions: Densory of nuclear foreproduction of magic numbers included). Nuclear Nuclear Nuclear Tusion. 9 C 7 Accelerators and Detectors Performantic transformation of magic numbers included). Nuclear Reactions: Theory, working and applications of GM counter, Semiconduct detector, Scintillation counter and Baryon Resonances. Conservation laws for mass-energy, linear momentum, angular momentum, electric charge, baryon Resonances. Conservation laws for mass-energy, linear momentum, angular momentum, electric charge, baryon. Charge, leptonic charge, leptonic charge, isospin and strageness. Concept of Quark model. 6 C 8 Elementary Particles Fundamental India Limited, 1993 5 5 5 1 Charles Khen, "Introductory Nuclear Physics", Miley India Private Limited, 2012, &: 5 5 5 5 5 5 5 5 5	4		Acoust heat ca Free E suscept Band	ical and Optica pacity, Dulong- lectron Theor ibility of condu Theory: Origin	l branches (qu Petit's law and y: Fermi energ ction electrons of band theo	alitative treatm Einstein's theo y, Density of s and Hall effect ry, Qualitative	ent). Qualitative ory of lattice he tates, Heat cap t in metals. idea of Bloch	ve description eat capacity. acity of condu	of Phonons in s ction electrons, nig-Penney mo	olids. Lattice Paramagnetic		9	C	D4
Auclear Models and Nuclear Reactions Nuclear Models level scheme in the context of reproduction of magic numbers included). Nuclear Reactions: Bethe's notation, types of nuclear reaction, Conservation laws, Cross-section of nuclear reaction, Theory of nuclear fission (qualitative), Nuclear reactors, Conservation laws, Cross-section of nuclear reaction, Theory of nuclear fission (qualitative), Nuclear reactors, Nuclear fission. 9 C 7 Accelerators and Detectors: Theory, working and applications of GM counter, Semiconductor detector, Scintillation counter and Wilson cloud chamber. 6 CC 8 Elementary Particles based on intrinsic-spin, mass, interaction and lifetime. Families of Leptons, Mesons, Baryons and Baryon Resonances. Concept of Auguar momentum, angular momentum, electric charge, baryonic charge, leptonic charge, isospin and strangeness. Concept of Quark model. 6 CC 8 Elementary Particles based on intrinsic-spin, mass, interaction and lifetime. Families of Leptons, Mesons, Baryons and Baryon Resonances. Concept of Nuclear Mesore mergy. Niear momentum, angular momentum, electric charge, baryonic charge, leptonic charge, isospin and strangeness. Concept of Quark model. 6 CC 8 Elementary Particles Fundamental India Limited, 1993 5 5 1. Charles Kittel, "Introductory Nuclear Physics", McGraw Hill, 2017 5 5 5 5 8 Bermard L, Ochen, "Concepts of Nuclear Physics", McGraw Hill, 2017 5 <td< td=""><td>5</td><td>and Radioactiv</td><td>s momen ve Nuclea Radioa</td><td>al Properties of at vector and ele ar Forces: Gene active Decays:</td><td>of Nucleus: M ctric quadrupo eral characterist Nuclear stabil</td><td>ass, binding en le moment tens ic of nuclear fo ity, basic ideas</td><td>nergy, radii, de or. orce and Deuter s about beta n</td><td>nsity, angular on ground state ninus decay, b</td><td>momentum, ma e properties. eta plus decay,</td><td>alpha decay,</td><td></td><td>9</td><td>C</td><td>D5</td></td<>	5	and Radioactiv	s momen ve Nuclea Radioa	al Properties of at vector and ele ar Forces: Gene active Decays:	of Nucleus: M ctric quadrupo eral characterist Nuclear stabil	ass, binding en le moment tens ic of nuclear fo ity, basic ideas	nergy, radii, de or. orce and Deuter s about beta n	nsity, angular on ground state ninus decay, b	momentum, ma e properties. eta plus decay,	alpha decay,		9	C	D5
Accelerators and Detectors Accelerators: Theory, working and applications of Van de Graaff accelerator, Cyclotron and Synchrotron. Detectors: Theory, working and applications of GM counter, Semiconductor detector, Scintillation counter and Nison cloud chamber. 6 C 8 Elementary Particles Fundamental interactions and their mediating quant. Concept of antiparticles. Classification of elementary particles based on intrinsic-spin, mass, interaction and lifetime, Families of Leptons, Mesons, Baryons, Baryons	6	and Nuclear	Is Nuclea level so Nuclea	r Models: Liq cheme in the con r Reactions: E	uid drop mode ntext of reprodu Bethe's notation	el and Bethe-W uction of magic n, types of nuc	veizsacker mas numbers inclu lear reaction, (ss formula. Sin ded). Conservation la	gle particle she aws, Cross-secti	ll model (the		9	C	D6
8 Fundamental interactions and their mediating quanta. Concept of antiparticles. Classification of elementary particles based on intrinsic-spin, mass, interaction and lifetime. Families of Leptons, Mesons, Baryons and Baryon Resonances. Conservation laws for mass-energy, linear momentum, angular momentum, electric charge, baryonic charge, leptonic charge, isospin and strangeness. Concept of Quark model. 6 C Reference Books:	7		nd Accele Detecte	rators: Theory, ors: Theory, wo	working and a working and a	pplications of V	Van de Graaff	accelerator, Cy	clotron and Syn	chrotron. n counter and		6	C	D 7
Reference Books: 1. Charles Kittel, "Introduction to Solid State Physics", Wiley India Private Limited, 2012, &e 2. A.J. Dekker, "Solid State Physics", Macmillan India Limited, 1993 3. R.K. Puri, V.K. Babbar, "Solid State Physics", S. Chand Publishing, 2015 4. Kenneth S. Krane, "Introductory Nuclear Physics", Wiley India Private Limited, 2008 5. Bernard L. Cohen, "Concepts of Nuclear Physics", McGraw Hill, 2017 6. S.N. Ghoshal, "Nuclear Physics", S. Chand Publishing, 2019 e-Learning Source: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx 4. Swayam Prabha - DTH Channel, https://www.swayampabha.gov.in/index.php/program/current he/8 Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PS01 PS02 PS03 1 CO2 3 2 - - - 3 3 - 1 CO4 3 2 - - - 3 3 - 1	8	•	Fundar particle Baryon	nental interactions based on int Resonances.	ons and their r rinsic-spin, ma Conservation	ss, interaction laws for mass	and lifetime. -energy, linear	Families of Le momentum,	ptons, Mesons, angular momen	Baryons and		6	C	D 8
2. A.J. Dekker, "Solid State Physics", Macmillan India Limited, 1993 3. R.K. Puri, V.K. Babbar, "Solid State Physics", S. Chand Publishing, 2015 4. Kenneth S. Krane, "Introductory Nuclear Physics", Wiley India Private Limited, 2008 5. Bernard L. Cohen, "Concepts of Nuclear Physics", McGraw Hill, 2017 6. S.N. Ghoshal, "Nuclear Physics", S. Chand Publishing, 2019 e-Learning Source: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/mptelhrd 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx 4. Swayam Prabha - DTH Channel, https://www.swamprabha.gov.in/index.php/program/current_he/8 PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PSO1 PSO2 PSO3 P CO1 3 2 - - - 3 3 - 1 1 CO2 3 2 - - - 3 3 - 1 1 CO4 3 2 - - - 3 3 - 1 1 <t< td=""><td></td><td></td><td></td><td>, ,</td><td></td><td><u> </u></td><td>U</td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td></t<>				, ,		<u> </u>	U				•			
3. R.K. Puri, V.K. Babbar, "Solid State Physics", S. Chand Publishing, 2015 4. Kenneth S. Krane, "Introductory Nuclear Physics", Wiley India Private Limited, 2008 5. Bernard L. Cohen, "Concepts of Nuclear Physics", McGraw Hill, 2017 6. S.N. Ghoshal, "Nuclear Physics", S. Chand Publishing, 2019 e-Learning Source: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx 4. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current hc/8 PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PS01 PS02 PS03 1 CO1 3 2 - - - 3 3 - 1 1 CO2 3 2 - - - 3 3 - 1 1 CO3 3 2 - - - 3 3 - 1 1 CO4 3 2 - - - 3 3							, 2012, 8e							
5. Bernard L. Cohen, "Concepts of Nuclear Physics", McGraw Hill, 2017 6. S.N. Ghoshal, "Nuclear Physics", S. Chand Publishing, 2019 e-Learning Source: 1. MIT Open Learning - Massachusetts Institute of Technology, https://www.youtube.com/user/nptelhrd 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.usdc.gov.in/SearchContent.aspx 4. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current he/8 PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PSO1 PSO2 PSO3 P CO1 3 2 - - - 3 3 - 1 1 CO2 3 2 - - - 3 3 - 1 1 CO3 3 2 - - - 3 3 - 1 1 CO4 3 2 - - - 3 3 - 3 3 - 3 3 - 1 1 1	3. R.K.	Puri, V.K. Babbar	r, "Solid Stat	e Physics", S. C	hand Publishin	ig, 2015								
6. S.N. Ghoshal, "Nuclear Physics", S. Chand Publishing, 2019 e-Learning Source: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx 4. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current he/8 POPSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PS01 PS02 PS03 P CO1 3 2 - - - 3 3 - 1 CO2 3 2 - - - 3 3 - 1 CO3 3 2 - - - 3 3 - 1 CO4 3 2 - - - 3 3 - 1 1 CO3 3 2 - - - 3 3 - 1 1 CO4 3 2 -							2008							
e-Learning Source: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx 4. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8 Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PSO1 PSO2 PSO3 P Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PSO1 PSO2 PSO3 P CO1 3 2 - - - 3 3 - 1 1 CO2 3 2 - - - 3 3 - 1 1 CO3 3 2 - - - 3 3 - 3 3 - 3		,				2017								
2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd. 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx 4. Sway=Prabha - DTH Channel, https://www.sway=mprabha.gov.in/index.php/program/current he/8 Course Articulation Matrix: (Mapping COS with POS and PSOs) PO-PSO PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PSO1 PSO2 PSO3 PI CO1 3 2 - - - 3 2 - 1 1 CO2 3 2 - - - 3 3 - 1 1 CO3 3 2 - - - 3 3 - 1 1 CO4 3 2 - - - 3 3 - 3 3 - 1<	e-Learniı	ng Source:			- C ·									
3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx 4. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current he/8 Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PS01 PS02 PS03 P Course Articulation Matrix: (Mapping of COs with POs and PSOs) CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PS01 PS02 PS03 P Course Articulation Matrix: (Mapping of COs with POs and PSOs) CO1 3 2 - - - 3 3 2 - 1 1 CO2 3 2 - - - 3 3 - 1 1 CO2 3 2 - - - 3 3 - 1 CO3 3 2 - - - 3 3 -								ser/nptelbrd						
4. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8 Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PS01 PS02 PS03 P CO1 3 2 - - - 3 2 - 1 1 CO2 3 2 - - - 3 3 - 1 1 CO3 3 2 - - - 3 3 - 1 1 CO3 3 2 - - - 3 3 - 1 1 CO3 3 2 - - - 3 3 - 1 1 CO4 3 2 - - - 3 3 - 3 3 - 3 3 - 3 3 - 3 3 - 3 3 - 3 3 - 3	3. Uttar	Pradesh Higher E	Education Dig	gital Library, <u>ht</u>	tp://heecontent	.upsdc.gov.in/S	earchContent.a	aspx						
PO-PSO CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PS01 PS02 PS03 P C01 3 2 - - - 3 2 - 1 C02 3 2 - - - 3 3 - 1 C03 3 2 - - - - 3 3 - 1 C03 3 2 - - - - 3 3 - 2 - C04 3 2 - - - - 3 3 - 3 C05 3 2 - - - - 3 3 - 3 C06 3 2 - - - 3 3 - 1 C07 3 2 - - - 3 3 -	4. Sway	am Prabha - DTH	I Channel, <u>ht</u>	tps://www.swa	yamprabha.gov	.in/index.php/p	orogram/curren	<u>he/8</u>						
CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PS01 PS02 PS03 P CO1 3 2 - - - 3 2 - 1 CO2 3 2 - - - 3 3 - 1 CO3 3 2 - - - - 3 3 - 1 CO3 3 2 - - - - 3 3 - 2 - CO4 3 2 - - - 3 3 - 3 CO5 3 2 - - - 3 3 - 3 CO6 3 2 - - - 3 3 - 1 CO7 3 2 - - - 3 3 - 1					Course Art	ticulation Matri	ix: (Mapping o	f COs with POs	s and PSOs)		1			
CO1 3 2 - - - 3 2 - 1 CO2 3 2 - - - 3 3 - 1 1 CO3 3 2 - - - - 3 3 - 1 1 CO3 3 2 - - - - 3 3 - 1 1 CO3 3 2 - - - - 3 3 - 2 1 CO4 3 2 - - - - 3 3 - 3 3 CO5 3 2 - - - - 3 3 - 3 3 CO6 3 2 - - - 3 3 - 1 1 CO7 3 2 - - - 3 3 - 1 1		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2		PSO3	Р	SO 4
CO3 3 2 - - - 3 3 - 2 CO4 3 2 - - - 3 3 - 2 CO4 3 2 - - - 3 3 - 3 CO5 3 2 - - - 3 3 - 3 CO6 3 2 - - - 3 2 - 1 CO7 3 2 - - - 3 3 - 1	CO1			-	-	-	-			-		1		2
CO4 3 2 - - - 3 3 - 3 CO5 3 2 - - - 3 3 - 3 3 CO6 3 2 - - - 3 2 - 1 CO7 3 2 - - - 3 3 - 1				-	-	-	-			-				2
CO5 3 2 - - - 3 3 - 3 CO6 3 2 - - - 3 2 - 1 CO7 3 2 - - - 3 3 - 1														2 2
CO7 3 2 - - 3 3 - 1	CO5	3	2		-	-	-	3	3	•		3		2
													_	2 2
	CO8	3	2	-	-	-	-	3	3			2		2

Effective from Session: 2024-25										
Course Code B010602T/PY315		Title of the Course	Analog & Digital Principles & Applications	L	Т	Р	С			
Year	Third	Semester	Sixth	4	0	0	4			
Pre-Requisite	10+2 with Physics	Co-requisite	Passed B.Sc. 2 nd Year							
Course Objectives		his course aims to give students the competence in Analog and Digital Electronics. At the end of the course the students are expected gain the thorough knowledge of Analog and Digital Electronics and their applications in daily life.								

	Course Outcomes					
CO1	Study the drift and diffusion of charge carriers in a semiconductor.					
CO2	Understand the Two-Port model of a transistor.					
CO3	Study the working, properties and uses of FETs.					
CO4	Comprehend the design and operations of SCRs and UJTs.					
CO5	Understand various number systems and binary codes.					
CO6	Familiarize with binary arithmetic.					
CO7	Study the working and properties of various logic gates.					
CO8	Comprehend the design of combinational and sequential circuits.					

Unit No.	Title of the Unit	Content of Unit Expressions for Fermi energy, Electron density in conduction band, Hole density in valence band, Drift of	Contact Hrs.	Mapped CO					
1	Semiconductor Junction	9	CO1						
2	2 Transistor Modelling Transistor as Two-Port Network. Notation for dc & ac components of voltage & current. Quantitative discussion of Z, Y & h parameters and their equivalent two-generator model circuits. h-parameters for CB, CE & CC configurations. Analysis of transistor amplifier using the hybrid equivalent model and estimation of Input Impedance, Output Impedance and Gain (current, voltage & power).								
3	Field Effect Transistors	JFET: Construction (N channel & P channel); Configuration (CS, CD & CG); Operation in different regions (Ohmic or Linear, Saturated or Active or Pinch off & Break down); Important Terms (Shorted Gate Drain Current, Pinch Off Voltage & Gate Source Cut-Off Voltage); Expression for Drain Current (Shockley equation); Characteristics (Drain & Transfer); Parameters (Drain Resistance, Mutual Conductance or Transconductance & Amplification Factor); Biasing w.r.t. CS configuration (Self Bias & Voltage Divider Bias); Amplifiers (CS & CD or Source Follower); Comparison (N & P channels and BJTs & JFETs). MOSFET: Construction and Working of DE-MOSFET (N channel & P channel) and E-MOSFET (N channel & P channel); Characteristics (Drain & Transfer) of DE-MOSFET and E-MOSFET; Comparison of JFFET and MOSFET.	8	CO3					
4	Other Devices	SCR: Construction; Equivalent Circuits (Two Diodes, Two Transistors & One Diode-One Transistor); Working (Off state & On state); Characteristics; Applications (Static switch, Phase control system & Battery charger). UJT: Construction; Equivalent Circuit; Working (Cutoff, Negative Resistance & Saturation regions); Characteristics (Peak & Valley points); Applications (Trigger circuits, Relaxation oscillators & Sawtooth generators).	5	CO4					
5	Number System	Number Systems: Binary, Octal, Decimal & Hexadecimal number systems and their inter conversion. Binary Codes: BCD, Excess-3 (XS3), Parity, Gray, ASCII & EBCDIC Codes and their advantages & disadvantages. Data representation.	6	CO5					
6	Binary Arithmetic	Binary Addition, Decimal Subtraction using 9's & 10's complement, Binary Subtraction using 1's & 2's compliment, Multiplication and Division.	5	CO6					
7	Logic Gates	Truth Table, Symbolic Representation and Properties of OR, AND, NOT, NOR, NAND, EX-OR & EX-NOR Gates. Implementation of OR, AND & NOT gates (realization using diodes & transistor). De Morgan's theorems. NOR & NAND gates as Universal Gates. Application of EX-OR & EX-NOR gates as pairty checker. Boolean Algebra. Karnaugh Map.	9	C07					
8	Combinational and Sequential Circuits	Combinational Circuits: Half Adder, Full Adder, Parallel Adder, Half Substractor, Full Substractor. Data Processing Circuits: Multiplexer, Demultiplexer, Decoders & Encoders. Sequential Circuits: SR, JK & D Flip-Flops, Shift Register (transfer operation of Flip-Flops), and Asynchronous & Synchronous counters.	10	CO8					
	e Books:								
		'Electronic Devices and Circuit Theory'', Prentice-Hall of India Pvt. Ltd., 2015, 11e							
		abrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e							
	 B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e 								
8. R.P. Jain, "Modern Digital Electronics", McGraw Hill, 2009, 4e									
e-Learni	e-Learning Source:								
		husetts Institute of Technology, https://openlearning.mit.edu/							
		nology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd							
3. Uttar	3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx								

4. Swayam Prabha - DTH Channel, <u>https://www.swayamprabha.gov.in/index.php/program/current_he/8</u>

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3	2	-	-	-	-	3	2	-	1	2
CO2	3	2	-	-	-	-	3	3	-	1	2
CO3	3	2	-	-	-	-	3	3	-	2	2
CO4	3	2	-	-	-	-	3	3	-	3	2
CO5	3	2	-	-	-	-	3	3	-	3	2
CO6	3	2	-	-	-	-	3	2	-	1	2
CO7	3	2	-	-	-	-	3	3	-	1	2
CO8	3	2	-	-	-	-	3	3	-	2	2

|--|

Effective from Session: 2024-25								
Course	Code	B010603P/PY316	Analog & Digital Circuits	L	Т	Р	С	
Year Third Semester Sixth 0 0								2
Pre-Requisite 10+2 with Physics Co-requisite Passed B.Sc. 2 nd Year								
Course Objectives The purpose of this undergraduate course is to impart practical knowledge/measurements in Analog and Digital Electronics through different experiments related to its theoretical course.								
Course Outcomes								
CO1	To learn about the different methods of finding the energy band gap of a semiconductor.							
COA								

CO2 To calculate the hybrid parameter of a transistor from normal parameters. CO3

To study the behaviour of FET and MOSFET from their characteristic curves. To study the behaviour of SCR and UJT from their characteristic curves. CO4 CO5 To study the functioning the working of different logic gates

* A student has to perform at least 7 experiments from the Offline Experiment List and 3 from the Online Virtual Lab Experiment List / Link.

Experiment No.	Title of the Experiment	Aim of the Experiment (*Offline)	Contact Hrs.	Mapped CO					
1	Energy Band Gap To find the energy band gap of semiconductor by reverse saturation current method. 4 CO1								
2	Four Probe MethodTo find the energy band gap of semiconductor by four probe method.4CO1								
3	Hybrid parameters of transistorTo find the hybrid parameters (h - parameters) of a transistor in Common Emitter Mode4CO2								
4	Field Effect Transistor (FET) To study the characteristics of FET. 4 CO3								
5	Metal Oxide Field Effect Transistor (MOSFET)	To study the characteristics of MOSFET.	4	CO3					
6	Silicon Controlled Rectifier	To study the characteristics of SCR.	4	CO4					
7	Unijunction Transistor To study the characteristics of UJT. 4 CO4								
8	Logic Gates	To study and verify the logics of: (i) AND gate using TTL IC 7408 (ii) OR gate using TTL IC 7432 (iii) NOT gate using TTL IC 7404 (iv) Ex-OR gate using TTL IC 7486 (v) NAND gate and use as Universal gate using TTL IC 7400 (vi) NOR gate and use as Universal gate using TTL IC 7402	4	CO5					
Experiment No.	Title of the Experiment	Aim of the Experiment (*Online Virtual Lab)	Contact Hrs.	Mapped CO					
1	Field Effect Transistor (FET)	ID-VD characteristics of Junction Field Effect Transistor (JFET)							
2	Silicon Controlled Rectifier	Silicon Controlled Rectifier (SCR) characteristics							
3	Unijunction Transistor Unijunction Transistor (UJT) and relaxation oscillator								
4	Logic Gates Verification and interpretation of truth table for AND, OR, NOT, NAND, NOR, Ex-OR, Ex- NOR gates								
5	Half Adder and Full Adder Construction of half and full adder using XOR and NAND gates and verification of its operation								
6	Half Subtractor and Full Subtractor	To study and verify half and full subtractor							
7	Universal Gates	Realization of logic functions with the help of Universal Gates (NAND, NOR)							
8	8 NOR Gate Latch Construction of a NOR gate latch and verification of its operation								
9	Flip Flops	Verify the truth table of RS, JK, T and D Flip Flops using NAND and NOR gates							
10	Shift Registers	Design and verify the 4-Bit Serial In - Parallel Out Shift Registers							
11	Decoder and Encoders	Implementation and verification of decoder or demultiplexer and encoder using logic gates							
12	Multiplexer and Demultiplexer	Implementation of 4x1 multiplexer and 1x4 demultiplexer using logic gates							
13	Synchronous and Asynchronous Counter	Design and verify the 4-Bit Synchronous or Asynchronous Counter using JK Flip Flop							
14	Binary to Gray and Gray to Binary conversion	Verify Binary to Gray and Gray to Binary conversion using NAND gates only							
15	15 1-Bit and 2-Bit comparator Verify the truth table of 1-Bit and 2-Bit comparator using logic gates								
Reference Boo									
	L. Nashelsky, "Electronic Devices and Circuit Theorem	-							
· · · · ·	C. Halkias, Satyabrata Jit, "Electronic Devices and								
	n, S.K. Banerjee, "Solid State Electronic Devices", 1								
	lectronic Fundamentals and Applications", Prentice								
-	Kumar, "Hand Book of Electronics", Pragati Praka								
	Malvino, Goutam Saha, "Digital Principles and Appl								
		o Theory and Practice", Prentice-Hall of India Private Limited, 1982, 2e							
	odern Digital Electronics", McGraw Hill, 2009, 4e								
e-Learning Sou	urce: t Amrita Vishwa Vidyapeetham, <u>https://vlab.amrita</u>	adu/2sub=1&brsb=74							
	t Amrita Vishwa Vidyapeetham, <u>https://viab.amrita.</u>								
	ms /Web Links of other virtual labs may be sugges								
0	, = e sugges	· · · · · · · · · · · · · · · · · · ·							

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	2						3	3			3
CO2	2						3	3			3
CO3	3						2	3			3
CO4	2						3	3			3
CO5	3						2	3		2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD