

| Effective from Session: 2024-25 |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                        |   |   |   |   |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------|---|---|---|---|--|--|
| Course Code                     | B030501T / MT320                                                                                                                                                                                                                                                                                                                                                                                                                            | Title of the Course | Group and Ring Theory & Linear Algebra | L | Т | Р | С |  |  |
| Year                            | Third     Semester     Fifth                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                        |   |   |   |   |  |  |
| Pre-Requisite                   | Knowledge of Sets,<br>Relations and<br>Matrices                                                                                                                                                                                                                                                                                                                                                                                             | Co-requisite        | 4                                      | 1 | 0 | 5 |   |  |  |
| Course Objectives               | The objective of the course is to develop the skills to apply the basic knowledge of Group and Ring theory.<br>The course will further develop understanding the concepts of Linear Algebra and their applications. The topics introduced will serve as basic tools for specialized studies in science field. After successfully completion of course, the student will able to explore subject knowledge into their respective dimensions. |                     |                                        |   |   |   |   |  |  |

|     | Course Outcomes                                                                                                                   |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| CO1 | Liner algebra is a basic course in almost all branches of science. The objective of this course is to introduce a student to the  |  |  |  |  |  |  |
|     | basics of linear algebra and some of its applications.                                                                            |  |  |  |  |  |  |
| CO2 | Students will be able to know the concepts of group, ring and other related properties which will prepare the students to take up |  |  |  |  |  |  |
|     | further applications in the relevant fields.                                                                                      |  |  |  |  |  |  |
| CO3 | The student will use this knowledge in computer science, finance mathematics, industrial mathematics and bio mathematics.         |  |  |  |  |  |  |
|     | After completion of this course students appreciate its interdisciplinary nature.                                                 |  |  |  |  |  |  |

| Part-A<br>Group and Ring Theory |                                                                                                                                                                                                                                                            |                 |              |  |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|
| Unit No.                        | Content of Unit                                                                                                                                                                                                                                            | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |
| Ι                               | Automorphism, inner automorphism, Automorphism groups, Automorphism groups of finite and infinite cyclic groups, Characteristic subgroups, Commutator subgroup and its properties; Applications of factor groups to automorphism groups.                   | 10              | 2 & 3        |  |  |  |  |  |
| II                              | Conjugacy classes, The class equation, <i>p</i> -groups, The Sylow theorems and consequences, Applications of Sylow theorems; Finite simple groups, Non-simplicity tests; Generalized Cayley's theorem, Index theorem, Embedding theorem and applications. | 10              | 2 & 3        |  |  |  |  |  |
| III                             | Polynomial rings over commutative rings, Division algorithm and consequences,<br>Principal ideal domains, Factorization of polynomials, Reducibility tests, Irreducibility tests,<br>Eisenstein criterion, Unique factorization in $Z[x]$ .                | 9               | 2 & 3        |  |  |  |  |  |
| IV                              | <b>IV</b> Divisibility in integral domains, Irreducibles, Primes, Unique factorization domains, Euclidean domains.                                                                                                                                         |                 |              |  |  |  |  |  |
|                                 | Part-B<br>Mathematical Methods                                                                                                                                                                                                                             |                 |              |  |  |  |  |  |
| Unit No.                        | Content of Unit                                                                                                                                                                                                                                            | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |
| V                               | Vector spaces, Subspaces, Linear independence and dependence of vectors, Basis and Dimension, Quotient space.                                                                                                                                              | 10              | 1&3          |  |  |  |  |  |
| VI                              | Linear transformations, The Algebra of linear transformations, rank nullity theorem, their representation as matrices.                                                                                                                                     | 9               | 1 & 3        |  |  |  |  |  |
| VII                             | Linear functionals, Dual space, Characteristic values, Cayley Hamilton Theorem.                                                                                                                                                                            | 9               | 1&3          |  |  |  |  |  |
| VIII                            | Inner product spaces and norms, Cauchy-Schwarz inequality, Orthogonal vectors, Orthonormal sets and bases, Bessel's inequality for finite dimensional spaces, Gram-Schmidt orthogonalization process, Bilinear and Quadratic forms.                        | 9               | 1&3          |  |  |  |  |  |

| Refere | Reference Books: Part-A                               |  |  |  |  |  |  |
|--------|-------------------------------------------------------|--|--|--|--|--|--|
| 1.     | I. N. Herstein, Topics in Algebra, John Wiley & Sons. |  |  |  |  |  |  |
| 2.     | Suggested digital plateform: NPTEL/SWAYAM/MOOCS.      |  |  |  |  |  |  |
| Refere | Reference Books: Part-B                               |  |  |  |  |  |  |
| 1.     | Linear Algebra by K. Hoffman and R. Kunze.            |  |  |  |  |  |  |
| 2.     | Suggested digital plateform:NPTEL/SWAYAM/MOOCs        |  |  |  |  |  |  |

| PO-PSO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 |
|--------|-----|-----|-----|-----|-----|------|------|------|------|
| СО     |     |     |     | -   |     |      |      |      |      |
| CO1    | 3   | 3   | 2   | 1   | 3   | 3    | 2    | 3    | 3    |
| CO2    | 2   | 2   | 2   | 1   | 3   | 2    | 1    | 2    | 2    |

| CO3                                                                     | 3      | 3            | 2             | 1 | 2                  | 3 | 2 | 2 | 2 |  |  |
|-------------------------------------------------------------------------|--------|--------------|---------------|---|--------------------|---|---|---|---|--|--|
| 1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation |        |              |               |   |                    |   |   |   |   |  |  |
|                                                                         |        |              |               |   |                    |   |   |   |   |  |  |
|                                                                         | Name A | sign of Prog | ram Coordinat |   | Sign & Seal of HoD |   |   |   |   |  |  |



| Effective from Session: 2024-25 |                                                                                                                                                                                                                                                                                                                                                                                                                               |          |       |   |   |   |   |  |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|---|---|---|---|--|--|--|
| Course Code                     | B030502T / MT321 Title of the Course Number Theory & Game Theory I                                                                                                                                                                                                                                                                                                                                                            |          |       | L | Т | Р | С |  |  |  |
| Year                            | Third                                                                                                                                                                                                                                                                                                                                                                                                                         | Semester | Fifth |   | 1 | 0 | _ |  |  |  |
| Pre-Requisite                   | Knowledge of Sets & Co-requisite None                                                                                                                                                                                                                                                                                                                                                                                         |          | 4     |   | 0 | 5 |   |  |  |  |
| Course Objectives               | The objective of the course is to develop the skills to apply the basic knowledge of Number theory. The course will further develop understanding the concepts of Game theory and their applications. The topics introduced will serve as basic tools for specialized studies in science field. After successfully completion of course, the student will able to explore subject knowledge into their respective dimensions. |          |       |   |   |   |   |  |  |  |

|            | Course Outcomes                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| CO1        | Upon successful completion, students will have the knowledge and skills to solve problems in elementary number theory.                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| CO2        | This course provides an introduction to Game Theory. Game Theory is a mathematical framework which makes possible the analysis of the decision making process of interdependent subjects. It is aimed at explaining and predicting how individual behaves in a specific strategic situation, and therefore help improve decision making. |  |  |  |  |  |  |  |
| CO3        | A situation is strategic if the outcomes of decision problem depends n the choice of more than one person. Most decision problems in real life are strategic                                                                                                                                                                             |  |  |  |  |  |  |  |
| <b>CO4</b> | To illustrate the concept, real-world examples, case studies, and classroom experiments might be used.                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |

|          | Part-A<br>Number Theory                                                                                                                                                                                                                                                                                                                        |                 |              |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| Unit No. | Content of Unit                                                                                                                                                                                                                                                                                                                                | Contact<br>Hrs. | Mapped<br>CO |
| Ι        | <b>Theory of Numbers:</b> Divisibility; Euclidean algorithm; primes; congruences; Fermat's theorem, Euler's theorem and Wilson's theorem; Fermat's quotients and their elementary consequences; solutions of congruences; Chinese remainder theorem; Euler's phi-function.                                                                     | 10              | 1 & 4        |
| II       | <b>Congruences:</b> Congruences modulo powers of prime; primitive roots and theirs existence; quadratic residues; Legendre symbol, Gauss' lemma about Legendre symbol; quadratic reciprocity law; proofs of various formulations; Jacobi symbol.                                                                                               | 9               | 1 & 4        |
| III      | <b>Diophantine Equations:</b> Solutions of $ax + by + c = 0$ , $x^n + y^n = z^n$ ; properties of Pythagorean triples; sums of two, four and five squares; assorted examples of Diophantine equations.                                                                                                                                          | 9               | 1 & 4        |
| IV       | <b>Generating Functions and Recurrence relations:</b> Generating Function Models, calculating coefficient of generating functions, partitions, Exponential Generating functions, A summation Method, Recurrence Relation Models, Divide and conquer Relations, solutions of Linear, Recurrence Relations, Solutions with Generating Functions. | 9               | 1 & 4        |
|          | Part-B<br>Game Theory                                                                                                                                                                                                                                                                                                                          |                 |              |
| Unit No. | Content of Unit                                                                                                                                                                                                                                                                                                                                | Contact<br>Hrs. | Mapped<br>CO |
| V        | Introduction, overview, uses of game theory, some applications and examples, and formal definitions of the normal forms, payoffs, mixed strategies, pure strategy, Nash equilibrium.                                                                                                                                                           | 10              | 2            |
| VI       | Introduction, characteristics of game theory, Two-person zero-sum game, Pure and Mixed strategies, Saddle point and its existence.                                                                                                                                                                                                             | 10              | 2            |
| VII      | Fundamental Theorem of Rectangular games, Concept of Dominance and Graphical method of solving rectangular games.                                                                                                                                                                                                                              | 9               | 3            |
| VIII     | Relationship between rectangular game and Linear Programming Problem, reduction of $m \times n$ game and solution of $2 \times 2$ , $2 \times s$ and $r \times s$ cases by graphical method, algebraic and linear programming solution of $m \times n$ games.                                                                                  | 9               | 3 & 4        |

| Refere | Reference Books: Part-A                                                                                                             |  |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1.     | Niven, I., Zuckerman, H. S. and Montegomery, H.L. An Int. of the Theory of Numbers John Wiley and sons, 2003.                       |  |  |  |  |  |  |  |
| 2.     | Burten, D.M., Elementary Number Theory (4 <sup>th</sup> edition) Universal Book Stall, 2002.                                        |  |  |  |  |  |  |  |
| 3.     | B alakrishnan, V.K., Schaum's Outline of Theory and Problems of Combinatorics Including Concept of Graph Theory, McGraw Hill, 1995. |  |  |  |  |  |  |  |
| 4.     | Balakrishnan, V.K., Introductory Discrete Mathematics, Dover Publications, 1996.                                                    |  |  |  |  |  |  |  |
| 5.     | Suggested digital platform: NPTEL/SWAYAM/MOOCS.                                                                                     |  |  |  |  |  |  |  |
| Refere | nce Books: Part-B                                                                                                                   |  |  |  |  |  |  |  |
| 1.     | Martin Osborne, An Introduction to Game Theory, Oxford University Press, 2003.                                                      |  |  |  |  |  |  |  |
| 2.     | Prajit Dutta, Strategies and Games, MIT Press, 1999. (WebsiteI: <u>http://www.ece.stevens.tech.edu/~ccomanic/ee*00c.html</u> )      |  |  |  |  |  |  |  |

| 3. | Allan Mac Kenzie, Game Theory for Wireless Engineers, Synthesis lectures on Communications, 2006. |
|----|---------------------------------------------------------------------------------------------------|
|    |                                                                                                   |

#### 4. Suggested digital plateform:NPTEL/SWAYAM/MOOCs

| PO-PSO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 |
|--------|-----|-----|-----|-----|-----|------|------|------|------|
| СО     | 101 | 102 | 100 | 101 | 100 | 1501 | 1002 | 1500 | 1501 |
| CO1    | 3   | 2   | 1   | 2   | 3   | 3    | 2    | 3    | 3    |
| CO2    | 3   | 1   | 2   | 2   | 2   | 3    | 1    | 1    | 2    |
| CO3    | 2   | 1   | 1   | 1   | 2   | 1    | 2    | 1    | 1    |
| CO4    | 2   | 2   | 1   | 1   | 2   | 2    | 1    | 1    | 2    |

| 1- Low Correlation; 2- Moderate Correlati | on; 3- Substantial Correlation |
|-------------------------------------------|--------------------------------|
|                                           |                                |
|                                           |                                |
| Name & Sign of Program Coordinator        | Sign & Seal of HoD             |



| Effective from Session: 2024-25 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |       |   |   |   |   |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------|---|---|---|---|
| Course Code                     | B030503T / MT322                                                                                                                                                                                                                                                                                                                                                                                                                      | Title of the Course     Graph Theory & Discrete<br>Mathematics |       | L | Т | Р | С |
| Year                            | Third                                                                                                                                                                                                                                                                                                                                                                                                                                 | Semester                                                       | Fifth |   |   |   |   |
| Pre-Requisite                   | Knowledge of Sets,<br>Relations and<br>Matrices                                                                                                                                                                                                                                                                                                                                                                                       | Co-requisite                                                   | None  | 4 | 1 | 0 | 5 |
| Course Objectives               | The objective of the course is to develop the skills to apply the basic knowledge of Graph theory. The course will further develop understanding the concepts of Discrete Mathematics and their applications. The topics introduced will serve as basic tools for specialized studies in science field. After successfully completion of course, the student will able to explore subject knowledge into their respective dimensions. |                                                                |       |   |   |   |   |

|     | Course Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Upon successful completion, students will have the knowledge of various types of graphs, their terminology and applications.                                                                                                                                                                                                                                                                                                     |
| CO2 | After Successful completion of this course students will be able to understand the isomorphism and homomorphism of graphs.<br>This course covers the basic concepts of graphs used in computer science and other disciplines. The topic includes path, circuits, adjacency matrix, tree, coloring. After successful completion of this course the student will have knowledge of graph coloring, color problem, vertex coloring. |
| CO3 | After successful completion the student will have knowledge of Logic gates, Karanaugh maps and skills to proof by using truth table. After successful completion of this course the student will be able to apply the basics of the automation theory, transition function and table.                                                                                                                                            |
| CO4 | This course covers the basic concepts of discrete mathematics used in computer science, and other discipline that involve formal reasoning. The topic include logic, counting, relations, Hasse diagram and Boolean algebra. After successful completion of this course the student will have the knowledge in Mathematical reasoning, Combinatorial analysis, Discrete structures and Applications.                             |

|          | Part-A<br>Graph Theory                                                                                                                                                                                                                                                                                                                                                                |                 |              |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| Unit No. | Content of Unit                                                                                                                                                                                                                                                                                                                                                                       | Contact<br>Hrs. | Mapped<br>CO |
| I        | Introduction to graphs, basic properties of graphs, Simple graph, multi graph, graph terminology, representation of graph, Bipartite, regular, planar and connected components in graph, Euler graphs, Directed, Undirected, multi graph, mixed graph.                                                                                                                                | 10              | 1            |
| II       | Walk and unilateral components, unicircle graphs, Hamiltonian path and circuits, Graph coloring, chromatics number, isomorphism and homomorphism of graphs, Incidence relation and degree of graph.                                                                                                                                                                                   | 9               | 2            |
| III      | Operation of graph circuit, Path and circuits, Eulerian circuits, Hamiltonian path and cycles, Adjacency matrix, Weighted graph, Travelling salesman problem, shortest path, Dijkstra's algorithm.                                                                                                                                                                                    | 9               | 2            |
| IV       | Tree, Binary and Spanning trees, coloring, color problems, Vertex coloring and important properties.                                                                                                                                                                                                                                                                                  | 9               | 2            |
|          | Part-B<br>Discrete Mathematics                                                                                                                                                                                                                                                                                                                                                        |                 |              |
| Unit No. | Content of Unit                                                                                                                                                                                                                                                                                                                                                                       | Contact<br>Hrs. | Mapped<br>CO |
| V        | <b>Propositional Logic-</b> Proposition logic, basic logic, logical connectives, truth tables, tautologies, contradiction, normal forms (conjunctive and disjunctive), modus ponens and modus tollens, validity, predicate logic, universal and existential quantification, proof by implication, converse, inverse contrapositive, contradiction, direct proof by using truth table. | 10              | 3            |
| VI       | <b>Relation</b> - Definition, types of relation, domain and range of a relation, pictorial representation of relation, properties of relation, partial ordering relation, Representation of POSETS using Hasse diagram, Chains, Maximal and Minimal point, Glb, lub, Lattices and Algebraic system, basic properties, Sublattice.                                                     | 10              | 4            |
| VII      | <b>Boolean Algebra-</b> Basic definitions, Sum of products and products of sums, Boolean Functions, Disjunctive normal form, Complete Disjunctive normal form, Conjugate normal form, Logic circuits, Logic networks, Design of circuits from given properties, Logic gates and Karnaugh maps.                                                                                        | 9               | 4            |
| VIII     | <b>Combinatories-</b> Inclusion- exclusion, recurrence relations (nth order recurrence relation with constant coefficients, Homogeneous recurrence relations, Inhomogeneous recurrence relations), generating function (closed form expression, properties of G.F., solution of recurrence relations using G.F. solution of combinatorial problem using G.F.)                         | 9               | 4            |

| Refe  | Reference Books: Part-A                                                                                                      |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1.    | Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science, Dover Publications, 2017.                  |  |  |  |  |
| 2.    | Douglas B West, Introduction to Graph Theory, Pearson 2018.                                                                  |  |  |  |  |
| 3.    | Santanu Saha Ray, Graph Theory with Algorithm and Its Applications: In Applied Science and Technology, Springer India, 2012. |  |  |  |  |
| 4.    | Suggested digital plateform: NPTEL/SWAYAM/MOOCS.                                                                             |  |  |  |  |
| Refei | rence Books: Part-B                                                                                                          |  |  |  |  |
| 1.    | C. L.Liu., Discrete Mathematics, Tata McGraw Hill, 1986.                                                                     |  |  |  |  |
| 2.    | Trembley and Manohar, Discrete Mathematics with computer application Tata McGraw Hill, 2008.                                 |  |  |  |  |
| 3.    | Kenneth H. Rosen, Discrete Mathematics and Its Applications, McGraw Hill Companies, 2012.                                    |  |  |  |  |
| 4.    | Suggested digital plateform: NPTEL/SWAYAM/MOOCs                                                                              |  |  |  |  |

| PO-PSO | PO1 | PO2 | PO3 | PO4 | PO5 | 5 PSO1 PSO2 PS | SO2 PSO3 | PSO4 |   |
|--------|-----|-----|-----|-----|-----|----------------|----------|------|---|
| CO     |     |     |     | -   |     |                |          |      |   |
| CO1    | 3   | 2   | 1   | 1   | 2   | 2              | 2        | 3    | 3 |
| CO2    | 2   | 3   | 2   | 1   | 3   | 2              | 2        | 2    | 3 |
| CO3    | 1   | 2   | 3   | 1   | 2   | 1              | 2        | 3    | 3 |
| CO4    | 3   | 3   | 3   | 1   | 3   | 2              | 2        | 3    | 3 |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Session: 2024-25 |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                                                        |   |   |   |   |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------|---|---|---|---|
| Course Code                     | B030504T / MT323                                                                                                                                                                                                                                                                                                                                                                                                                                   | Title of the Course | Title of the Course         Differential Geometry & Tensor<br>Analysis |   | Т | Р | С |
| Year                            | Third                                                                                                                                                                                                                                                                                                                                                                                                                                              | Semester            | Fifth                                                                  |   | 1 | 0 | _ |
| Pre-Requisite                   | Knowledge of<br>Geometry                                                                                                                                                                                                                                                                                                                                                                                                                           | Co-requisite        | None                                                                   | 4 | 1 | U | 5 |
| Course Objectives               | The objective of the course is to develop the skills to apply the basic knowledge of Differential Geometry.<br>The course will further develop understanding the concepts of Tensor Analysis and their applications. The<br>topics introduced will serve as basic tools for specialized studies in science field. After successfully<br>completion of course, the student will able to explore subject knowledge into their respective dimensions. |                     |                                                                        |   |   |   |   |

|     | Course Outcomes                                                                                                                 |
|-----|---------------------------------------------------------------------------------------------------------------------------------|
| CO1 | After successful completion of this course, students should be able to determine and calculate curvature of curves in different |
|     | coordinates systems.                                                                                                            |
| CO2 | This course covers the Local theory of Curves, Local theory of surfaces, Geodesics, Geodesics curvature, Curvature of curves,   |
|     | on surfaces, Gaussian curvature, Normal curvature etc.                                                                          |
| CO3 | After Successful completion of this course, students should have the knowledge of tensor algebra, different types of tensors,   |
|     | Riemannian space, Ricci tensor, Einstein space and Einstein tensor etc.                                                         |

|          | Part-A<br>Differential Geometry                                                                                                                                                                                                                                                                                                                                                                         |                 |              |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| Unit No. | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                         | Contact<br>Hrs. | Mapped<br>CO |
| Ι        | Local theory of curves-Space curves, Examples, Plane Curves, tangent and normal and binormal, osculating Plane, normal plane and rectifying plane, osculating circle, osculating sphere Helices, Serret-Frenet apparatus, contact between curve and surfaces, tangent surfaces, involutes and evolutes of curves, Bertrand curves, Intrinsic equations, fundamental existence theorem for space curves. | 10              | 1            |
| II       | Local theory of Surfaces-Tangent plane, Normal, Parametric patches on surface curve of a surface, family of surfaces (one parameter). Edge of regression, rues surfaces, skew ruled surfaces and developable surfaces.                                                                                                                                                                                  | 9               | 2            |
| III      | Metric-first fundamental form and second fundamental form and arc length, Direction coefficients, families of curves, intrinsic properties.                                                                                                                                                                                                                                                             | 9               | 2            |
| IV       | Gauss-Bonnet theorem, curvature of curves on surfaces, Gaussian curvature, normal curvature,<br>Meusneir's theorem, mean curvature, umbilic points, lines of curvature, Rodrigue's formula,<br>Euler's theorem                                                                                                                                                                                          | 9               | 1 & 2        |
|          | Part-B<br>Tensor Analysis                                                                                                                                                                                                                                                                                                                                                                               |                 |              |
| Unit No. | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                         | Contact<br>Hrs. | Mapped<br>CO |
| V        | Tensor Algebra: Vector spaces, the dual spaces, tensor product of vector spaces, transformation formulae, contraction, special tensors, symmetric tensor, inner product.                                                                                                                                                                                                                                | 10              | 3            |
| VI       | Tensor Analysis: Contravariant and Covariant vectors and tensors, Mixed tensors, symmetric and skew-symmetric tensors, Algebra of tensors, Contraction and inner product, Quotient theorem, Reciprocal tensors, Christoffel's symbols, Law of transformation of Christoffel's symbols                                                                                                                   | 10              | 3            |
| VII      | Gradient of scalars, Divergence of a contravariant vector, covariant vector and conservative vectors, Laplacian of an invariant, curl of a covariant vector                                                                                                                                                                                                                                             | 9               | 3            |
| VIII     | Riemannian space, Riemannian curvatures and their properties, Geodesics, Geodesics curvature, geometrical interpretation of curvature ensor.                                                                                                                                                                                                                                                            | 9               | 3            |

| Refere | Reference Books: Part-A                                                                                                                                |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1.     | T. J. Willmore, An Introduction in Differential Geometry, Dover Publications, 2012.                                                                    |  |  |  |  |
| 2.     | B. O'Neill, Elementary Differential Geometry, 2 <sup>nd</sup> Ed., Academic Press, 2006.                                                               |  |  |  |  |
| 3.     | C. E. Weatherburn, Differential Geometry of Three Dimensions, Cambridge University Press 2003.                                                         |  |  |  |  |
| 4.     | D. J. Struik, Lectures on Classical Differential Geometry, Dover Publications, 1988.                                                                   |  |  |  |  |
| 5.     | S. Lang, Fundamentals of Differential Geometry, Springer, 1999.                                                                                        |  |  |  |  |
| 6.     | B. Spain, Tensor Calculus: A Concise course, Dover Publications, 2003.                                                                                 |  |  |  |  |
| 7.     | L. P. Eisenhart, An Introduction to Differential Geometry (with the use of tensor Calculus), Princeton University Press, 1940.                         |  |  |  |  |
| 8.     | I. S. Sokolnikoff, Tensor Analysis, Theory and Applications to Geometry and Mechanics of Continaa, 2 <sup>nd</sup> Edition, John Wiley and Sons, 1964. |  |  |  |  |

| 9.    | Suggested digital plateform: NPTEL/SWAYAM/MOOCS.                                                      |
|-------|-------------------------------------------------------------------------------------------------------|
| Refer | ence Books: Part-B                                                                                    |
| 1.    | Z. Ahsan, Tensors-Mathematics of Differential Geometry, PHI, 2015.                                    |
| 2.    | David C. Kay, Tensor Analysis, Schaum's Outline Series, McGraw Hill 1988.                             |
| 3.    | R. S. Mishra, A Course in Tensors with Applications to Riemannian Geometry, Pothishala Pvt Ltd, 1965. |
| 4.    | Suggested digital plateform:NPTEL/SWAYAM/MOOCs                                                        |

| PO-PSO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 |
|--------|-----|-----|-----|-----|-----|------|------|------|------|
| СО     | 101 | 102 | 105 | 101 | 105 | 1501 | 1502 | 1505 | 1501 |
| CO1    | 3   | 3   | 1   | 2   | 2   | 3    | 2    | 2    | 3    |
| CO2    | 3   | 3   | 1   | 1   | 2   | 3    | 2    | 2    | 2    |
| CO3    | 3   | 3   | 1   | 2   | 3   | 3    | 2    | 2    | 2    |

#### 1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD



| Effective from Session: 2024-25 |                   |                                                                                                                                                                                                                                                             |                                   |   |   |   |   |  |  |  |  |
|---------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---|---|---|---|--|--|--|--|
| Course Code                     | B010501T/PY311    | Title of the Course                                                                                                                                                                                                                                         | Classical & Statistical Mechanics | L | Т | Р | С |  |  |  |  |
| Year                            | Third             | Semester                                                                                                                                                                                                                                                    | Fifth                             | 4 | 0 | 0 | 4 |  |  |  |  |
| Pre-Requisite                   | 10+2 with Physics | 0+2 with Physics Co-requisite Passed B.Sc. 2 <sup>nd</sup> Year                                                                                                                                                                                             |                                   |   |   |   |   |  |  |  |  |
| Course Objectives               |                   | his course aims to give students the competence in the basic Classical Mechanics and Statistical Mechanics. At the end of the course he students are expected to the thorough knowledge of basic concepts of Classical Mechanics and Statistical Mechanics. |                                   |   |   |   |   |  |  |  |  |

|     | Course Outcomes                                                                        |
|-----|----------------------------------------------------------------------------------------|
| CO1 | Understand the concepts of generalized coordinates and D'Alembert's principle.         |
| CO2 | Understand the Lagrangian dynamics and the importance of cyclic coordinates.           |
| CO3 | Comprehend the difference between Lagrangian and Hamiltonian dynamics.                 |
| CO4 | Study the important features of central force and its application in Kepler's problem. |
| CO5 | Recognize the difference between macrostate and microstate.                            |
| CO6 | Comprehend the concept of ensembles.                                                   |
| CO7 | Understand the classical and quantum statistical distribution laws.                    |
| CO8 | Study the applications of statistical distribution laws                                |

| Unit<br>No. | Title of the<br>Unit                                   | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Contact<br>Hrs. | Mapped<br>CO |
|-------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Constrained<br>Motion                                  | Constraints - Definition, Classification and Examples. Degrees of Freedom and Configuration space.<br>Constrained system, Forces of constraint and Constrained motion. Generalised coordinates, Transformation<br>equations and Generalised notations & relations. Principle of Virtual work and D'Alembert's principle                                                                                                                                                                                                                  | 6               | CO1          |
| 2           | Lagrangian<br>Formalism                                | Lagrangian for conservative & non-conservative systems, Lagrange's equation of motion (no derivation),<br>Comparison of Newtonian & Lagrangian formulations, Cyclic coordinates, and Conservation laws (with proofs<br>and properties of kinetic energy function included). Simple examples based on Lagrangian formulation.                                                                                                                                                                                                             | 9               | CO2          |
| 3           | Hamiltonian<br>Formalism                               | Phase space, Hamiltonian for conservative & non-conservative systems, Physical significance of Hamiltonian,<br>Hamilton's equation of motion (no derivation), Comparison of Lagrangian & Hamiltonian formulations, Cyclic<br>coordinates, and Construction of Hamiltonian from Lagrangian. Simple examples based on Hamiltonian<br>formulation.                                                                                                                                                                                          | 8               | CO3          |
| 4           | Central Force                                          | Definition and properties (with prove) of central force. Equation of motion and differential equation of orbit.<br>Bound & unbound orbits, stable & non-stable orbits, closed & open orbits and Bertrand's theorem. Motion<br>under inverse square law of force and derivation of Kepler's laws. Laplace-Runge-Lenz vector (Runge-Lenz<br>vector) and its applications.                                                                                                                                                                  | 7               | CO4          |
| 5           | Macrostate and<br>Microstate                           | Macrostate, Microstate, Number of accessible microstates and Postulate of equal a priori. Phase space, Phase trajectory, Volume element in phase space, Quantisation of phase space and number of accessible microstates for free particle in 1D, free particle in 3D & harmonic oscillator in 1D.                                                                                                                                                                                                                                       | 6               | CO5          |
| 6           | Concept of<br>Ensemble                                 | Problem with time average, concept of ensemble, postulate of ensemble average and Liouville's theorem (proof included). Micro Canonical, Canonical & Grand Canonical ensembles. Thermodynamic Probability, Postulate of Equilibrium and Boltzmann Entropy relation.                                                                                                                                                                                                                                                                      | 6               | CO6          |
| 7           | Distribution<br>Laws                                   | Statistical Distribution Laws: Expressions for number of accessible microstates, probability & number of particles in ith state at equilibrium for Maxwell-Boltzmann, Bose-Einstein & Fermi- Dirac statistics. Comparison of statistical distribution laws and their physical significance.<br>Canonical Distribution Law: Boltzmann's Canonical Distribution Law, Boltzmann's Partition Function, Proof of Equipartition Theorem (Law of Equipartition of energy) and relation between Partition function and Thermodynamic potentials. | 10              | CO7          |
| 8           | Applications of<br>Statistical<br>Distribution<br>Laws | Application of Bose-Einstein Distribution Law: Photons in a black body cavity and derivation of Planck's Distribution Law. Application of Fermi-Dirac Distribution Law: Free electrons in a metal, Definition of Fermi energy, Determination of Fermi energy at absolute zero, Kinetic energy of Fermi gas at absolute zero and concept of Density of States (Density of Orbitals).                                                                                                                                                      | 8               | CO8          |
| Referen     | ce Books:                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |
|             |                                                        | s P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2011, 3e<br>assical Mechanics", McGraw Hill, 2017                                                                                                                                                                                                                                                                                                                                                                                                            |                 |              |
|             | /                                                      | k, "Introduction to Classical Mechanics", McGraw Hill, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |
|             |                                                        | s (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017, 1e                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |
|             |                                                        | s of Statistical Mechanics", New Age International Private Limited, 2020, 2e<br>"Statistical Mechanics", New Age International Private Limited, 2007, 2e                                                                                                                                                                                                                                                                                                                                                                                 |                 |              |
|             | ing Source:                                            | Statistical internations, file international i fivate Lillineu, 2007, 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |              |
|             |                                                        | ssachusetts Institute of Technology, https://openlearning.mit.edu/                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |              |
|             |                                                        | echnology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |              |
| 3. Uttar    | r Pradesh Higher Edu                                   | cation Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |
| 4. Sway     | yam Prabha - DTH Cl                                    | nannel, https://www.swayamprabha.gov.in/index.php/program/current_he/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |
| [           |                                                        | Course Articulation Matrix: (Manning of COs with POs and PSOs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |              |

|              |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |      |      |      |      |  |
|--------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|--|
| PO-PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PSO1 | PSO2 | PSO3 | PSO4 |  |
| CO1          | 3   | 2                                                              | -   | -   | -   | -   | 3   | 2    | -    | 1    | 2    |  |
| CO2          | 3   | 2                                                              | -   | -   | -   | -   | 3   | 3    | -    | 1    | 2    |  |
| CO3          | 3   | 2                                                              | -   | -   | -   | -   | 3   | 3    | -    | 2    | 2    |  |
| CO4          | 3   | 2                                                              | -   | -   | -   | 1   | 3   | 3    | -    | 3    | 2    |  |
| CO5          | 3   | 2                                                              | -   | -   | -   | -   | 3   | 3    | -    | 3    | 2    |  |
| CO6          | 3   | 2                                                              | -   | -   | -   | -   | 3   | 2    | -    | 1    | 2    |  |
| CO7          | 3   | 2                                                              | -   | -   | -   | -   | 3   | 3    | -    | 1    | 2    |  |
| CO8          | 3   | 2                                                              | -   | -   | -   | -   | 3   | 3    | -    | 2    | 2    |  |



| Effective       | from Session: 2024-2                                                                                                                                                                                                                               | 25                                |                              |                                                |     |   |   |   |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------|------------------------------------------------|-----|---|---|---|--|--|
| Course C        | Code                                                                                                                                                                                                                                               | B010502T/PY312                    | Title of the Course          | Quantum Mechanics and Spectroscopy             | LI  | 1 | P | С |  |  |
| Year            |                                                                                                                                                                                                                                                    | Third                             | Semester                     | Fifth                                          | 4 0 |   | 0 | 4 |  |  |
| Pre-Requ        | uisite                                                                                                                                                                                                                                             | 10+2 with Physics                 | Co-requisite                 | Co-requisite Passed B.Sc. 2 <sup>nd</sup> Year |     |   |   |   |  |  |
| Course C        | Course Objectives This course aims to give students the competence in the basic Quantum Mechanics and Spectroscopy. At the end of the course the students are expected to gain the thorough knowledge of basic Quantum Mechanics and Spectroscopy. |                                   |                              |                                                |     |   |   |   |  |  |
| Course Outcomes |                                                                                                                                                                                                                                                    |                                   |                              |                                                |     |   |   |   |  |  |
| CO1             | CO1 Understand the significance of operator formalism in Quantum mechanics.                                                                                                                                                                        |                                   |                              |                                                |     |   |   |   |  |  |
| CO2             | Study the eigen and expectation value methods.                                                                                                                                                                                                     |                                   |                              |                                                |     |   |   |   |  |  |
| CO3             | Understand the basis an                                                                                                                                                                                                                            | d interpretation of Uncertainty   | principle.                   |                                                |     |   |   |   |  |  |
| CO4             | Develop the technique                                                                                                                                                                                                                              | of solving Schrodinger equation   | for 1D and 3D problems.      |                                                |     |   |   |   |  |  |
| CO5             | Comprehend the succes                                                                                                                                                                                                                              | ss of Vector atomic model in the  | theory of Atomic spectra.    |                                                |     |   |   |   |  |  |
| CO6             | Study the different aspe                                                                                                                                                                                                                           | ects of spectra of Group I and II | elements.                    |                                                |     |   |   |   |  |  |
| CO7             | Study the production ar                                                                                                                                                                                                                            | nd applications of X-rays.        |                              |                                                |     |   |   |   |  |  |
| CO8             | Develop an understandi                                                                                                                                                                                                                             | ing of the fundamental aspects o  | f Molecular spectra.         |                                                |     |   |   |   |  |  |
| Unit<br>No.     | Title of the Unit                                                                                                                                                                                                                                  |                                   | Content of Unit Contact Hrs. |                                                |     |   |   |   |  |  |

| Unit<br>No. | Title of the Unit                                       | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Contact<br>Hrs. | Mapped<br>CO |
|-------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Operator<br>Formalism                                   | <b>Operators:</b> Review of matrix algebra, definition of an operator, special operators, operator algebra and operators corresponding to various physical-dynamical variables. <b>Commutators:</b> Definition, commutator algebra and commutation relations among position, linear momentum and angular momentum and energy and time. Simple problems based on commutation relations.                                                                                                                                                                                                                                                                              | 5               | CO1          |
| 2           | Eigen and<br>Expectation<br>Values                      | <b>Eigen and Expectation Values:</b> Eigen equation for an operator, eigen state (value) and eigen functions. Linear superposition of eigen functions and Non-degenerate and Degenerate eigen states. Expectation value pertaining to an operator and its physical interpretation.<br><b>Hermitian Operators:</b> Definition, properties and applications. Prove of the Hermitian nature of various physical-dynamical operators.                                                                                                                                                                                                                                   | 6               | CO2          |
| 3           | Uncertainty<br>Principle and<br>Schrodinger<br>Equation | <ul> <li>Uncertainty Principle: Commutativity and simultaneity (theorems with proofs). Non commutativity of operators as the basis for uncertainty principle and derivation of general form of uncertainty principle through Schwarz inequality. Uncertainty principle for various conjugate pairs of physical- dynamical parameters and its applications.</li> <li>Schrodinger Equation: Derivation of time independent and time dependent forms, Schrodinger equation as an eigen equation, Deviation and interpretation of equation of continuity in Schrodinger representation, and Equation of motion of an operator in Schrodinger representation.</li> </ul> | 7               | CO3          |
| 4           | Applications of<br>Schrodinger<br>Equation              | <ul> <li>Application to 1D Problems: Infinite Square well potential (Particle in 1D box), Finite Square well potential, Potential step, Rectangular potential barrier and 1D Harmonic oscillator.</li> <li>Application to 3D Problems: Infinite Square well potential (Particle in a 3D box) and the Hydrogen atom (radial distribution function and radial probability included). (Direct solutions of Hermite, Associated Legendre and Associated Laguerre differential equations to be substituted).</li> </ul>                                                                                                                                                  | 12              | CO4          |
| 5           | Vector Atomic<br>Model                                  | Inadequacies of Bohr and Bohr-Sommerfeld atomic models w.r.t. spectrum of Hydrogen atom (fine structure of H-alpha line). Modification due to finite mass of nucleus and Deuteron spectrum. Vector atomic model (Stern-Gerlach experiment included) and physical and geometrical interpretations of various quantum numbers for single and many valence electron systems. LS and JJ couplings, spectroscopic notation for energy states, selection rules for transition of electrons and intensity rules for spectral lines. Fine structure of H-alpha line on the basis of vector atomic model.                                                                    | 10              | CO5          |
| 6           | Spectra of Alkali<br>and Alkaline<br>Elements           | <b>Spectra of Alkali Elements:</b> Screening constants for s, p, d and f orbitals; sharp, principle, diffuse and fundamental series; doublet structure of spectra and fine structure of Sodium D line. <b>Spectra of Alkaline Elements:</b> Singlet and triplet structure of spectra.                                                                                                                                                                                                                                                                                                                                                                               | 6               | CO6          |
| 7           | X – Rays and X<br>– Ray Spectra                         | Nature and production, Continuous X-ray spectrum and Duane-Hunt's law, Characteristic X-ray spectrum and Mosley's law, Fine structure of Characteristic X-ray spectrum, and X-ray absorption spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7               | CO7          |
| 8           | Molecular<br>Spectra                                    | Discrete set of energies of a molecule, electronic, vibrational and rotational energies. Quantisation of vibrational energies, transition rules and pure vibrational spectra. Quantisation of rotational energies, transition rules, pure rotational spectra and determination of inter nuclear distance. Rotational-Vibrational spectra; transition rules; fundamental band and hot band; O, P, Q, R, S branches.                                                                                                                                                                                                                                                  | 7               | CO8          |
| Referenc    |                                                         | Quantum Mechanics", Pearson Education, India, 2004, 2e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |
|             |                                                         | Quantum Mechanics", Pearson Education, India, 2004, 2e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |

E. Wichmann, "Quantum Physics (In SI Units): Berkeley Physics Course Vol 4", McGraw Hill, 2017 2.

Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics - Vol. 3", Pearson Education Limited, 2012 R Murugeshan, Kiruthiga Sivaprasath, "Modern Physics", S. Chand Publishing, 2019, 18e 3.

4.

5. H.E. White, "Introduction to Atomic Spectra", McGraw Hill, 1934

C.N. Banwell, E.M. McCash, "Fundamentals of Molecular Spectroscopy", McGraw Hill, 2017, 4e 6. S.L. Gupta, V. Kumar, R.C. Sharma, "Elements of Spectroscopy", Pragati Prakashan, Meerut, 2015, 27e 7.

e-Learning Source:

MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 1

National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 2

Name and Sign of Program Coordinator

3. Uttar Pradesh Higher Education Digital Library, <u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u>

4. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current\_he/8

|        |     |     |                   | Course A        | rticulation Matr | ix: (Mapping of | COs with POs a | and PSOs) |      |      |      |
|--------|-----|-----|-------------------|-----------------|------------------|-----------------|----------------|-----------|------|------|------|
| PO-PSO | PO1 | PO2 | PO3               | PO4             | PO5              | PO6             | PO7            | PSO1      | PSO2 | PSO3 | PSO4 |
| CO     | 101 | 102 | 105               | 104             | 105              | 100             | 10/            | 1501      | 1502 | 1505 | 1504 |
| CO1    | 3   | 2   | -                 | -               | -                | -               | 3              | 2         | -    | 1    | 2    |
| CO2    | 3   | 2   | -                 | -               | -                | -               | 3              | 3         | -    | 1    | 2    |
| CO3    | 3   | 2   | -                 | -               | -                | -               | 3              | 3         | -    | 2    | 2    |
| CO4    | 3   | 2   | -                 | -               | -                | -               | 3              | 3         | -    | 3    | 2    |
| CO5    | 3   | 2   | -                 | -               | -                | -               | 3              | 3         | -    | 3    | 2    |
| CO6    | 3   | 2   | -                 | -               | -                | -               | 3              | 2         | -    | 1    | 2    |
| CO7    | 3   | 2   | -                 | -               | -                | -               | 3              | 3         | -    | 1    | 2    |
| CO8    | 3   | 2   | -                 | -               | -                | -               | 3              | 3         | -    | 2    | 2    |
|        |     | 1   | - Low Correlation | on: 2- Moderate | Correlation: 3-  | Substantial Cor | relation       |           |      |      |      |



| Effective from Session: 2024-25 |                     |                                                                                                                                                                   |                          |                                                           |        |          |       |   |  |  |
|---------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------|--------|----------|-------|---|--|--|
| Course Code                     |                     | B010503P/PY313                                                                                                                                                    | Title of the Course      | le of the Course Demonstrative Aspects of Optics & Lasers |        |          |       | С |  |  |
| Year                            |                     | Third                                                                                                                                                             | Semester                 | Fifth                                                     | 0      | 0        | 4     | 2 |  |  |
| Pre-Requisite                   |                     | 10+2 with Physics                                                                                                                                                 | Co-requisite             | Passed B.Sc. 2 <sup>nd</sup> Year                         |        |          |       |   |  |  |
| Course (                        | Objectives          | The purpose of this undergraduate course is to impart practical knowledge/measurements in Optics through different experiments related to its theoretical course. |                          |                                                           |        |          |       |   |  |  |
|                                 |                     |                                                                                                                                                                   | Course                   | Outcomes                                                  |        |          |       |   |  |  |
| CO1                             | To understand the a | pplication of Fresnel'                                                                                                                                            | s Biprism in determinat  | ion of Wavelength of Light and thickness of a thin sh     | eet.   |          |       |   |  |  |
| CO2                             | To understand the a | pplication of Newton <sup>3</sup>                                                                                                                                 | 's Ring in determination | of Wavelength of Light and Refractive Index of a Ta       | ranspa | rent Lic | luid. |   |  |  |

**CO3** To find the Resolving Power of a grating and to understand its application in determination of wavelength of different colours of light.

**CO4** To find the dispersive power of a prism and refractive index of its material using spectrometer.

**CO5** To find the specific resistance of sugar solution using polarimeter and wavelength of Laser light using single slit diffraction.

\* A student has to perform at least 7 experiments from the Offline Experiment List and 3 from the Online Virtual Lab Experiment List / Link.

| Experiment<br>No. | Title of the Experiment                             | Content of Unit (*Offline)                                                    | Contact<br>Hrs. | Mappe<br>d CO |
|-------------------|-----------------------------------------------------|-------------------------------------------------------------------------------|-----------------|---------------|
| 1                 | Wavelength by Fresnel's Biprism                     | Fresnel Biprism: Wavelength of sodium light                                   | 4               | CO1           |
| 2                 | Thickness by Fresnel's Biprism                      | Fresnel Biprism: Thickness of mica sheet                                      | 4               | CO1           |
| 3                 | Wavelength by Newton's Ring                         | Newton's Rings: Wavelength of sodium light                                    | 4               | CO2           |
| 4                 | Refractive Index by Newton's Ring                   | Newton's Rings: Refractive index of liquid                                    | 4               | CO2           |
| 5                 | Resolving power of Grating                          | Plane Diffraction Grating: Resolving power                                    | 4               | CO3           |
| 6                 | Wavelength by Diffraction Grating                   | Plane Diffraction Grating: Spectrum of mercury light                          | 4               | CO3           |
| 7                 | Refractive index of Prism                           | Spectrometer: Refractive index of the material of a prism using sodium light  | 4               | CO4           |
| 8                 | Dispersive Power of Prism                           | Spectrometer: Dispersive power of the material of a prism using mercury light | 4               | CO4           |
| 9                 | Specific Rotation by Polarimeter                    | Polarimeter: Specific rotation of sugar solution                              | 4               | CO5           |
| 10                | Wavelength of Laser Light                           | Wavelength of Laser light using diffraction by single slit                    | 4               | CO5           |
| Experiment<br>No. | Title of the Experiment                             | Content of Unit (*Online Virtual Lab)                                         | Contact<br>Hrs. | Mappe<br>d CO |
| 1                 | Michelson's Interferometer - Working                | Michelson's Interferometer                                                    | 4               | CO1           |
| 2                 | Wavelength by Michelson's<br>Interferometer         | Michelson's Interferometer: Wavelength of laser beam                          | 4               | CO4           |
| 3                 | Wavelength by Newton's Ring                         | Newton's Rings: Wavelength of light                                           | 4               | CO1           |
| 4                 | Refractive Index by Newton's Ring                   | Newton's Rings: Refractive index of liquid                                    | 4               | CO4           |
| 5                 | Brewster's Law                                      | Brewster's angle determination                                                | 4               | CO4           |
| 6                 | Laser Beam Divergence                               | Laser beam divergence and spot size                                           | 4               | CO2           |
| 7                 | Refractive index of Prism                           | Spectrometer: Refractive index of the material of a prism                     | 4               | CO4           |
| 8                 | Dispersive Power of Prism                           | Spectrometer: Dispersive power of a prism                                     | 4               | CO2           |
| 9                 | Cauchy's Constant                                   | Spectrometer: Determination of Cauchy's constants                             | 4               |               |
| 10                | Wavelength by Diffraction Grating                   | Diffraction Grating                                                           | 4               |               |
| Reference Boo     |                                                     |                                                                               |                 |               |
|                   |                                                     | r Students", Methuen & Co., Ltd., London, 1962, 9e                            |                 |               |
| -                 | B. Mallick, "Engineering Practical Physics",        | · · ·                                                                         |                 |               |
| -                 | •                                                   | rishna Prakashan Media (Pvt.) Ltd., Meerut, 2019                              |                 |               |
|                   | V. Kumar, "Practical Physics", Pragati Prakas       | han, Meerut, 2014, 2e                                                         |                 |               |
| e-Learning Sou    |                                                     |                                                                               |                 |               |
|                   | s at Amrita Vishwa Vidyapeetham, https://vla        |                                                                               |                 |               |
|                   | s at Amrita Vishwa Vidyapeetham, <u>https://vla</u> |                                                                               |                 |               |
| 3. Digital Plat   | forms /Web Links of other virtual labs may b        | e suggested / added to this lists by individual Universities.                 |                 |               |

|              |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |      |      |      |      |  |
|--------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|--|
| PO-PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PSO1 | PSO2 | PSO3 | PSO4 |  |
| CO1          | 2   |                                                                |     |     |     |     | 3   | 3    |      |      | 3    |  |
| CO2          | 2   |                                                                |     |     |     |     | 3   | 3    |      |      | 3    |  |
| CO3          | 3   |                                                                |     |     |     |     | 2   | 3    |      |      | 3    |  |
| CO4          | 2   |                                                                |     |     |     |     | 3   | 3    |      |      | 3    |  |
| CO5          | 3   |                                                                |     |     |     |     | 2   | 3    |      | 2    | 3    |  |

| Name & Sign of Program Coordinator |  |
|------------------------------------|--|
|------------------------------------|--|



|                 |                                                           |                                                                         | mieg                                                           | al Univer                  | sity, Luckno                        | JW                     |                            |            |          |                                                               |     |
|-----------------|-----------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------|-------------------------------------|------------------------|----------------------------|------------|----------|---------------------------------------------------------------|-----|
| Effectiv        | re from Session: 202                                      | 24-25                                                                   |                                                                |                            |                                     |                        |                            |            |          | 1                                                             | _   |
| Course          | Code                                                      |                                                                         | 01T/MT327                                                      | Title of the<br>Course     | Multivariate An<br>Methods          | alysis & Noi           | n-parametric               | L          | Т        | Р                                                             | С   |
| Year            |                                                           | THIRI                                                                   |                                                                | Semester                   | FIFTH                               |                        |                            | 4          | 0        | 0                                                             | 4   |
| Pre-Rec         | quisite                                                   | 10+2                                                                    |                                                                | Co-                        |                                     |                        |                            |            |          |                                                               |     |
|                 |                                                           |                                                                         | matics                                                         | requisite                  | advanced conce                      | nts of mult            | iveriete enel              | veic and n | on noro  | motri                                                         |     |
| Course          | Objectives                                                | tools.                                                                  |                                                                | ementary and               |                                     | pis of mun             |                            | ysis and n | JII para | meun                                                          | C   |
| <i></i>         | L                                                         |                                                                         |                                                                |                            | irse Outcomes                       |                        |                            |            |          |                                                               |     |
| CO1             |                                                           |                                                                         |                                                                | concepts of                | vector space                        | and matric             | ces in order               | tostudy    |          |                                                               |     |
| GOA             | multivariate d                                            |                                                                         |                                                                |                            |                                     |                        |                            |            |          |                                                               |     |
| CO2             | U U                                                       |                                                                         | 1 1                                                            |                            | ate normal dis                      |                        |                            |            |          |                                                               |     |
| CO3             | Ability to uno                                            | derstand                                                                | d the Maxin                                                    | numLikeliho                | od Estimates o                      | f mean ve              | ctor and dis               | persion n  | natrix.  |                                                               |     |
| CO4<br>CO5      | Ability to apr                                            | ly dist                                                                 | ribution free                                                  | ent Analysis<br>tests (Non | and Factor Ana<br>-parametric me    | alysis.<br>ethods) for | one and t                  | wosamnle   | cases    |                                                               |     |
| Unit            |                                                           |                                                                         |                                                                |                            |                                     |                        |                            |            | Contact  |                                                               | ped |
| No.             | Title of the U                                            | nit                                                                     |                                                                |                            | Content of U                        |                        |                            |            | Hrs.     | C                                                             |     |
|                 |                                                           |                                                                         | -                                                              | · •                        | ace, Linear C                       |                        | · •                        |            | 7        |                                                               |     |
| 1               | Vector Space                                              |                                                                         | Independen                                                     | nce, Inner Pi              | roduct, Norm, O                     | Orthogonal             | ity, Dimens                | sion of    |          | COI                                                           | L   |
|                 |                                                           |                                                                         | Vector Spa                                                     | ice.                       |                                     |                        |                            |            |          |                                                               |     |
| 2               | Matrices                                                  |                                                                         | Row and C                                                      | Column Ran                 | k, Rank of Mat                      | trix, Eleme            | entary opera               | tions on   | 8        | 001                                                           |     |
| 2               | wattices                                                  |                                                                         | Matrices, I                                                    | nverse of a 1              | natrix.                             |                        |                            |            |          | CO1                                                           | Ĺ   |
|                 | Multivariate                                              |                                                                         | Multivaria                                                     | te Normal                  | Distribution,                       | Marginal               | and Cond                   | itional    | 8        |                                                               |     |
| 3               | Normal<br>Distribution                                    |                                                                         |                                                                |                            |                                     |                        |                            |            |          | CO2                                                           | 2   |
|                 | Distribution                                              |                                                                         | Maximum                                                        |                            |                                     |                        | ean vecto                  |            | 7        |                                                               |     |
| 4               | Estimation of                                             |                                                                         | Dispersion matrix, Independence and point sufficiency of these |                            |                                     |                        |                            |            |          | CO3                                                           | ł   |
| 7               | Mean Vector                                               |                                                                         | estimates.                                                     | maurx, m                   | dependence an                       | iu point s             | sufficiency                | of these   |          |                                                               | ,   |
|                 | A 11 .1                                                   | C                                                                       |                                                                | ng of Mult                 | ivariate Analy                      | aia. Drina             | inal Comp                  | ononta     | 7        |                                                               |     |
| 5               | 5 Applications of Multivariate                            |                                                                         |                                                                |                            | •                                   |                        |                            |            | ,        | CO4                                                           | 1   |
| 5               | Analysis                                                  |                                                                         | •                                                              |                            | Analysis (Appli                     |                        | lenteu uisci               | ussion,    |          | 04                                                            | ,   |
|                 | -                                                         |                                                                         | derivations not required)                                      |                            |                                     |                        |                            |            | 8        |                                                               |     |
| 6               | Correlations a Regressions                                |                                                                         |                                                                |                            |                                     |                        |                            | 0          | CO4      | ł                                                             |     |
|                 | Non-parametr                                              | ic                                                                      | <u> </u>                                                       |                            | Fasta for rando                     | maga and               | tast for as                | admaga     | 8        |                                                               |     |
| 7               | test for one                                              | ie i                                                                    | -                                                              |                            | Fests for randon<br>Sign test, Wil  |                        | 0                          |            | 0        | COS                                                           | ;   |
|                 | sample                                                    |                                                                         |                                                                | 1                          |                                     | Ũ                      |                            |            | _        | <u> </u>                                                      |     |
| 8               | test for two                                              | Non-parametric Two sample tests: Run test, Kolmogorov – Smirnov's test, |                                                                |                            |                                     |                        |                            |            | 7        | COS                                                           | 5   |
| 0               | sample                                                    |                                                                         | Median tes                                                     | t and Mann-                | Whitney U test                      |                        |                            |            |          | 000                                                           |     |
| Referen         | ce Books:                                                 |                                                                         |                                                                |                            |                                     |                        |                            |            |          |                                                               |     |
| 1.              | Anderson, T.W                                             | 7. (2003)                                                               | ): An Introdu                                                  | ction to Mul               | tivariate Statistic                 | cal Analysis           | s, 3 <sup>rd</sup> Edn., J | ohnWiley   |          |                                                               |     |
| C               | Muinhaad DI                                               | (1002)                                                                  | A aposto of M                                                  | ultivomiete Of             | atistical Theorem                   | John Wils-             | Valinaa                    |            |          |                                                               |     |
| <u>2.</u><br>3. | A.M. (1972): N                                            | · ·                                                                     | A                                                              |                            | atistical Theory,                   | John whey              | . Asmrsagar                |            |          |                                                               |     |
| <u> </u>        |                                                           |                                                                         |                                                                |                            | ed Multivariate A                   | Analyzia Et            | hEdn Door                  | on & Dron  | tico Uo  | 11                                                            |     |
| <u>4.</u><br>5. |                                                           |                                                                         |                                                                |                            |                                     |                        | iieuii., reais             |            |          | <u>11</u>                                                     |     |
| <u> </u>        |                                                           |                                                                         |                                                                |                            | sis. South Asian<br>e. Academic Pre |                        |                            |            |          |                                                               |     |
|                 | ive digital platform                                      | ,                                                                       |                                                                |                            |                                     | 33.                    |                            |            |          |                                                               |     |
|                 | //youtu.be/Ig2qF5B                                        |                                                                         |                                                                |                            |                                     |                        |                            |            |          |                                                               |     |
|                 |                                                           |                                                                         |                                                                |                            | (Monning of CO                      |                        |                            |            |          |                                                               |     |
| PO-PSO          |                                                           |                                                                         |                                                                |                            | (Mapping of COs v                   |                        |                            |            |          |                                                               |     |
| C0              | PO1 PO2                                                   | PO3                                                                     | PO4                                                            | PO5 PO6                    | PO7                                 | PSO1                   | PSO2                       | PSO3       | PSO4     | P                                                             | SO4 |
| C01             | 3 2                                                       | 1                                                                       |                                                                | 3                          |                                     | 3                      | 2                          | 3          | 2        | $-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 3   |
| CO2<br>CO3      | 3 2<br>3 2                                                | 1                                                                       | 1                                                              | 3 3                        |                                     | 3                      | 3                          | 2 3        | 2        | +                                                             | 3   |
| C03             | 3 1                                                       | 1                                                                       | 1                                                              | 3                          |                                     | 3                      | 2                          | 2          | 3        |                                                               | 3   |
| CO5             | 3 2                                                       | 1                                                                       | 1                                                              | 3                          |                                     | 3                      | 3                          | 3          | 3        |                                                               | 2   |
|                 |                                                           | 1- ]                                                                    | Low Correlatio                                                 | n; 2- Moderate             | Correlation; 3- Sul                 | bstantial Cor          | relation                   |            |          |                                                               |     |
|                 | Name &                                                    | Sign of P                                                               | rogram Coordi                                                  | nator                      |                                     |                        | Sign & Seal                | of HoD     |          |                                                               |     |
|                 | Name & Sign of Program Coordinator     Sign & Seal of HoD |                                                                         |                                                                |                            |                                     |                        |                            |            |          |                                                               |     |



|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  | Integ                                                                | ral Ui                                                                                                                                             | niver         | sity, L   | uckno            | )W             |                  |            |                   |             |     |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|------------------|----------------|------------------|------------|-------------------|-------------|-----|
| Effectiv      | e from Ses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sion: 20  | 24-25            |                                                                      | Title                                                                                                                                              | of 4h o       |           |                  |                |                  |            |                   |             |     |
| Course        | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | B0605            | 02T/MT328                                                            | Cour                                                                                                                                               | of the<br>se  | Analysi   | s of Vari        | ance & Desig   | gn of Experim    | ents L     | T                 | Р           | C   |
| Year          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | THIRI            |                                                                      | Seme                                                                                                                                               | ster          | FIFTH     |                  |                |                  | 4          | 0                 | 0           | 4   |
| Pre-Req       | uisite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | 10+2 v           |                                                                      | Co-                                                                                                                                                |               |           |                  |                |                  |            |                   |             |     |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Mathe:           |                                                                      | requi                                                                                                                                              |               | ming      | onductin         | a opolyzin     | g and extract    | ing infor  | motion            | from        |     |
| Course        | Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1         |                  | mental data.                                                         | -                                                                                                                                                  | of desig      | gning, co | onductin         | ig, anaryzin   | g and extract    | ing inton  | mation            | nom         |     |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | cxpen            | memai uata.                                                          |                                                                                                                                                    | Cou           | rse Outco | omes             |                |                  |            |                   |             |     |
| CO1           | Knowle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dge of    | the conc         | ept of Analys                                                        | sis of V                                                                                                                                           |               |           |                  |                |                  |            |                   |             |     |
| CO2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  | ANOVA for                                                            |                                                                                                                                                    |               |           |                  | fication.      |                  |            |                   |             |     |
| CO3           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                  | ept of Design                                                        |                                                                                                                                                    | •             | •         |                  |                |                  |            |                   |             |     |
| CO4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                                                                      |                                                                                                                                                    |               |           |                  |                | d withoutmis     | sing obse  | ervation          | s.          |     |
| CO5           | The may be performented with any other symmetric designs of the transmission of the tr |           |                  |                                                                      |                                                                                                                                                    |               |           |                  |                |                  |            |                   |             |     |
| Unit<br>No.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | le of the |                  | 1                                                                    | <b>I</b>                                                                                                                                           |               |           | ontent of U      | ••             |                  |            | Contact<br>Hrs.   | Mapp<br>CC  |     |
| 110.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  | Definition                                                           | n of An                                                                                                                                            | alvsis o      | of Varia  | nce Ass          | umptions a     | ndLimitation     | sof        | <u>1115.</u><br>7 |             |     |
| 1             | ANOVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1         |                  | ANOVA,                                                               |                                                                                                                                                    |               |           |                  | umptions u     |                  | .5 01      |                   | C01         |     |
| 2             | Two wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y         |                  |                                                                      |                                                                                                                                                    |               |           |                  | umber of ob    | servations p     | er cell.   | 8                 | <b>CO</b> 2 |     |
| 2             | classific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ation     |                  | Duncan's                                                             |                                                                                                                                                    |               |           |                  |                | •                |            |                   | CO2         |     |
|               | Principle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | es of     |                  |                                                                      |                                                                                                                                                    |               |           |                  |                | on, Replicatio   |            | 8                 |             |     |
| 3             | Experim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | esigns           |                                                                      |                                                                                                                                                    |               |           | • •              | • •            | t using unifo    | ormity     |                   | CO3         |     |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  | trials. Co                                                           |                                                                                                                                                    |               |           |                  |                | and definiti     | on of      | 7                 |             |     |
| 4             | Differen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                  |                                                                      |                                                                                                                                                    |               |           |                  |                | and definition   |            |                   | CO3         |     |
|               | Experim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ental D   | esigns           | efficiency of design, Comparison of efficiency between CRD and RBD.  |                                                                                                                                                    |               |           |                  |                |                  |            | 0.05              |             |     |
| 5             | Comparison between Latin Square Design (LSD), Lay-out, ANOVA table, Comparison of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                  |                                                                      |                                                                                                                                                    |               |           | son of           | 7              |                  |            |                   |             |     |
| 5             | experim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ental de  | signs            | -                                                                    |                                                                                                                                                    | •             |           | •                | SD and CRI     |                  |            |                   | CO4         |     |
|               | Missing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nlot      |                  | Missing plot technique: Estimation of missing plots by minimizing 8  |                                                                                                                                                    |               |           |                  |                |                  |            |                   |             |     |
| 6             | techniqu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                  |                                                                      | error sum of squares in RBD and LSD with one or two missing                                                                                        |               |           |                  |                |                  |            | CO4               |             |     |
|               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                  |                                                                      | observations.                                                                                                                                      |               |           |                  |                |                  |            | 0                 |             |     |
| _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  | Factorial Experiments: General description of factorial experiments, |                                                                                                                                                    |               |           |                  |                | 8                |            |                   |             |     |
| 7             | Factoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l Experi  | iments           |                                                                      | $2^2$ , $2^3$ factorial experiments arranged in RBD and LSD, Definition of Main effects and Interactions in $2^2$ and $2^3$ factorial experiments, |               |           |                  |                |                  |            |                   | CO5         |     |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                                                                      |                                                                                                                                                    |               |           |                  |                |                  |            |                   |             |     |
| 8             | Estimati<br>and inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                  | <b>^</b>                                                             |                                                                                                                                                    |               | •         | <b>.</b>         |                | mates and ter    | sts for    | 7                 | CO5         |     |
| D. C          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | action    | effects          | main and                                                             | interac                                                                                                                                            | tion en       | tects (Al | nalysis v        | vithout cont   | rounding).       |            |                   |             |     |
| Referen<br>1. | ce Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C and     | Kanoor           | $V K (2014) \cdot 1$                                                 | Fundam                                                                                                                                             | antals of     | f Appliq  | d Statistic      | os A th Editiv | on, Sultan Cha   | nd & Son   | 0                 |             |     |
| 2.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                                                                      |                                                                                                                                                    |               |           |                  |                | ey & Sons, Inc   |            | 3                 |             |     |
| 3.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  | , ,                                                                  | -                                                                                                                                                  |               | 5         |                  |                | ernational (P) I |            | ublisher          | s           |     |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                                                                      |                                                                                                                                                    |               |           |                  |                |                  |            |                   | 5.          |     |
| 4.            | Goon, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M., Gt    | ipta, M.K.       | and Dasgupta                                                         | а, В. (20                                                                                                                                          | 16): Fu       | ndamenta  | als of Sta       | tistics. Vol.  | II, World Press  | s, Kolkata | •                 |             |     |
| 5.            | Joshi, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .D. (19   | 87). Linea       | r Estimation                                                         | and Des                                                                                                                                            | sign of l     | Experime  | ents. Nev        | w Age Intern   | national (P) Lto | 1. New De  | elhi.             |             |     |
| 6.            | Ũ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | ,                | , 0                                                                  |                                                                                                                                                    |               | 1         |                  | Edition, John  | Wiley & Sons     | s, Inc.    |                   |             |     |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  | <pre>x/platform: NP</pre>                                            |                                                                                                                                                    |               |           |                  |                |                  |            |                   |             |     |
| https:/       | //www.you                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tube.coi  | <u>m/watch?v</u> | =IEUTRhyoHl                                                          | Nc&list=                                                                                                                                           | <u>PLPJSq</u> | TyvDev    | <u>vS9Lxp4</u> j | reGJ7eNsxH     | <u>xJA8</u>      |            |                   |             |     |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  | Course Artic                                                         | ulation N                                                                                                                                          | Aatrix: (     | Mapping   | g of COs v       | with POs and   | PSOs)            |            | T                 |             |     |
| PO-PSC        | D PO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PO2       | PO3              | PO4                                                                  | PO5                                                                                                                                                | PO6           | ]         | PO7              | PSO1           | PSO2             | PSO3       | PSO4              | PS          | SO- |
| CO<br>CO1     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2         | 1                |                                                                      | 3                                                                                                                                                  |               |           |                  | 3              | 2                | 3          | 2                 |             | 3   |
| CO2           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1         | 1                |                                                                      | 3                                                                                                                                                  |               |           |                  | 3              | 3                | 2          | 2                 |             | 3   |
|               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2         | 1                |                                                                      | 2 3                                                                                                                                                |               |           |                  | 3              | 3                | 3          | 2                 |             | 2   |
| CO3           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                                                                      | 1                                                                                                                                                  |               |           |                  | 3              | 2                | 2          | 3                 |             | 3   |
|               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>2    | 1                |                                                                      | 2                                                                                                                                                  |               |           |                  | 3              | 3                | 3          | 3                 |             | 2   |

Sign & Seal of HoD

Name & Sign of Program Coordinator



| Effective from Session: 2024 | Effective from Session: 2024-25 |                        |                                                    |   |   |   |   |  |  |  |  |
|------------------------------|---------------------------------|------------------------|----------------------------------------------------|---|---|---|---|--|--|--|--|
| Course Code                  | B060503P/MT329                  | Title of the<br>Course | Non-Parametric Methods & Design of Experiments Lab | L | Т | Р | С |  |  |  |  |
| Year                         | Third                           | Semester               | Fifth                                              | 0 | 0 | 4 | 2 |  |  |  |  |
| Pre-Requisite                | 10+2 with<br>Mathematics        | Co-requisite           |                                                    |   |   |   |   |  |  |  |  |
| Course Objectives            |                                 |                        |                                                    |   |   |   |   |  |  |  |  |

|     | Course Outcomes                                                                                             |
|-----|-------------------------------------------------------------------------------------------------------------|
| CO1 | Ability to conduct test of significance based non-parametric tests.                                         |
| CO2 | Ability to deal with multivariate data.                                                                     |
| CO3 | Knowledge of Principal Component Analysis and Factor Analysis. Ability to perform ANOVA for one way and two |
|     | classifications                                                                                             |
| CO4 | Ability to perform post-hoc analysis.                                                                       |
| CO5 | Ability to conduct analysis of CRD, RBD and LSD with and without missing observations and                   |
|     | Ability to conduct analysis for Factorial experiments (without confounding)                                 |

| Experiment<br>No. | Title of the<br>Experiment           | Content of Experiment                                                                                              | Contact<br>Hrs. | Mapped<br>CO |
|-------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1                 |                                      | Problems based on Non-parametric tests for one sample.                                                             | 2               | 1            |
| 2                 |                                      | Problems based on Non-parametric tests for two samples.                                                            | 2               | 1            |
| 3                 |                                      | Problems based on Rank and Inverse of a matrix.                                                                    | 2               | 2            |
| 4                 |                                      | Problems based on Mean vector and Dispersionmatrix of a multivariate normal distribution.                          | 2               | 2            |
| 5                 |                                      | Problems based on Principal Component Analysis.                                                                    | 2               | 3            |
| 6                 |                                      | Problems based on Factor Analysis.                                                                                 | 4               | 3            |
| 7                 |                                      | Problems based on Analysis of variance in one-way and two-way classification (with and without interaction terms). | 4               | 4            |
| 8                 |                                      | Problems based on Analysis of a Latin square design.                                                               | 4               | 4            |
| 9                 |                                      | Problems based on Analysis of variance in RBD and LSD with one or two missing observations.                        | 4               | 5            |
| 10                |                                      | Problems based on Factorial Experiment Practical                                                                   | 4               | 5            |
| Reference Boo     | oks:                                 |                                                                                                                    |                 |              |
| 1. Coc            | hran, W. G. and                      | Cox, G. M. (1957). Experimental Design. John Wiley & Sons, New York.                                               |                 |              |
|                   | rhead, R.J. (198<br>lysis, 1stEdn. N | 2): Aspects of Multivariate Statistical Theory, John Wiley.Kshirsagar, A.M. (1972): M<br>Iarcel Dekker.            | ultivariate     |              |

3. Gibbons, J. D. and Chakraborty, S (2003): Nonparametric Statistical Inference. 4th Edition.Marcel Dekker, CRC

e-Learning Source:

Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS

|                  |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |        |           |            |              |                |                  |      |      |      |  |
|------------------|-----|----------------------------------------------------------------|-----|--------|-----------|------------|--------------|----------------|------------------|------|------|------|--|
| PO-<br>PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4    | PO5       | PO6        | PO7          | PSO1           | PSO2             | PSO3 | PSO4 | PSO5 |  |
| CO1              | 3   |                                                                |     |        |           |            | 3            | 3              | 3                | 3    | 3    | 3    |  |
| CO2              | 3   |                                                                |     |        |           |            | 2            | 3              | 2                | 3    | 3    | 2    |  |
| CO3              | 3   |                                                                |     |        |           |            | 3            | 3              | 2                | 2    | 2    | 1    |  |
| CO4              | 3   |                                                                |     |        |           |            | 2            | 3              | 2                | 2    | 3    | 2    |  |
| CO5              | 3   |                                                                |     |        |           |            | 2            | 3              | 3                | 3    | 3    | 3    |  |
|                  |     |                                                                |     | 1- Low | Correlati | on; 2- Mod | erate Correl | ation; 3- Subs | stantial Correla | tion |      |      |  |



| Effective from Session: 2024-25 |                                                                              |                                                |                                                                                 |                |                    |                                                                                                                                                                                                                |   |  |  |  |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------|----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|--|--|
| Course Code                     | B030502T / MT324 <b>Title of the Course</b> Metric Spaces & Complex Analysis |                                                | L                                                                               | Т              | Р                  | С                                                                                                                                                                                                              |   |  |  |  |  |  |  |  |
| Year                            | Third                                                                        | Semester                                       | Sixth                                                                           |                |                    |                                                                                                                                                                                                                |   |  |  |  |  |  |  |  |
| Pre-Requisite                   | Knowledge of sets,<br>limit, continuity & Co-requisite None 3                |                                                |                                                                                 |                |                    | 0                                                                                                                                                                                                              | 4 |  |  |  |  |  |  |  |
| Course Objectives               | course will further developics introduced will                               | velop understanding th<br>serve as basic tools | e concepts of Complex Analysis and t<br>for specialized studies in science fiel | heir a<br>d. A | pplicat<br>fter su | The objective of the course is to develop the skills to apply the basic knowledge of Metric Spaces. The course will further develop understanding the concepts of Complex Analysis and their applications. The |   |  |  |  |  |  |  |  |

|     | Course Outcomes                                                                                                                |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| CO1 | The course is aimed at exposing the students to foundations of analysis which will be useful in understanding various physical |  |  |  |  |  |  |  |
|     | phenomena and gives the student the foundation in mathematics.                                                                 |  |  |  |  |  |  |  |
|     | After completion of this course the student will have rigorous and deeper understanding of fundamental concepts in             |  |  |  |  |  |  |  |
| CO2 | Mathematics. This will be helpful to the student in understanding pure mathematics and in research.                            |  |  |  |  |  |  |  |
| CO3 | Students will be able to know the concepts of metric space, basic concepts and developments of complex analysis which will     |  |  |  |  |  |  |  |
|     | prepare the students to take up further applications in the relevant fields.                                                   |  |  |  |  |  |  |  |
|     |                                                                                                                                |  |  |  |  |  |  |  |

|          | Part-A<br>Metric Spaces                                                                                                                                                                                                                                                                                                                                                                                      |                 |              |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| Unit No. | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                              | Contact<br>Hrs. | Mapped<br>CO |
| Ι        | <b>Basic Concepts:</b> Metric spaces: Definition and examples, Sequences in metric spaces, Cauchy sequences, Complete metric space.                                                                                                                                                                                                                                                                          | 8               | 1 & 3        |
| II       | <b>Topology of Metric Spaces:</b> Open and closed ball, Neighborhood, Open set, Interior of a set, limit point of a set, derived set, closed set, closure of a set, diameter of a set, Cantor's theorem, Subspaces, Dense set.                                                                                                                                                                               | 8               | 1&3          |
| III      | <b>Continuity &amp; Uniform Continuity in Metric Spaces:</b> Continuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphism, Contraction mapping, Banach fixed point theorem.                                                                                                                                                                        | 7               | 1 & 3        |
| IV       | <b>Connectedness and Compactness:</b> Connectedness, Connected subsets of real numbers, Connectedness and continuous mappings, Compactness, Compactness and boundedness, Continuous functions on compact spaces.                                                                                                                                                                                             | 7               | 1 & 3        |
|          | Part-B<br>Complex Analysis                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |
| Unit No. | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                              | Contact<br>Hrs. | Mapped<br>CO |
| V        | Analytic Functions and Cauchy-Riemann Equations: Functions of complex variable, Mappings;<br>Mappings by the exponential function, Limits, Theorems on limits, Limits involving the point at<br>infinity, Continuity, Derivatives, Differentiation formulae, Cauchy-Riemann equations, Sufficient<br>conditions for differentiability; Analytic functions and their examples.                                | 8               | 1 & 2        |
| VI       | <b>Elementary Functions and Integrals:</b> Exponential function, Logarithmic function, Branches and derivatives of logarithms, Trigonometric function, Derivatives of functions, Definite integrals of functions, Contours, Contour integrals and its examples, Upper bounds for moduli of contour integrals.                                                                                                | 8               | 1 & 2        |
| VII      | <b>Cauchy's Theorems and Fundamental Theorem of Algebra:</b> Antiderivatives, Proof of antiderivative theorem, Cauchy-Goursat theorem, Cauchy integral formula; An extension of Cauchy integral formula, Consequences of Cauchy integral formula, Liouville's theorem and the fundamental theorem of algebra.                                                                                                | 7               | 1 & 2        |
| VIII     | <b>Series and Residues:</b> Convergence of sequences and series, Taylor series and its examples;<br>Laurent series and its examples, Absolute and uniform convergence of power series, Uniqueness of<br>series representations of power series, Isolated singular points, Residues, Cauchy's residue<br>theorem, residue at infinity; Types of isolated singular points, Residues at poles and its examples. | 7               | 1 & 2        |

| Refere | ence Books: Part-A                                                                                         |
|--------|------------------------------------------------------------------------------------------------------------|
| 1.     | Mathematical Analysis by Shanti Narain.                                                                    |
| 2.     | Shirali, Satish & Vasudeva, H. L. (2009). Metric Spaces, Springer, First Indian Print.                     |
| 3.     | Kumaresan, S. (2014). Topology of Metric Spaces (2 <sup>nd</sup> ed.). Narosa Publishing House. New Delhi. |
| 4.     | Simmons, G. F. (2004). Introduction to Topology and Modern Analysis. Tata McGraw Hill. New Delhi.          |

| 5.     | Suggested digital plateform: NPTEL/SWAYAM/MOOCS.        |
|--------|---------------------------------------------------------|
| Refere | ence Books: Part-B                                      |
| 1.     | Function of Complex Variable by Shanti Narain.          |
| 2.     | Complex variable and applications by Brown & Churchill. |
| 3.     | Suggested digital plateform: NPTEL/SWAYAM/MOOCs         |

| PO-PSO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 |
|--------|-----|-----|-----|-----|-----|------|------|------|------|
| СО     | 101 | 102 | 100 | 101 | 100 | 1501 | 1002 | 1500 | 1501 |
| CO1    | 3   | 3   | 2   | 1   | 3   | 3    | 3    | 2    | 3    |
| CO2    | 3   | 3   | 2   | 1   | 3   | 3    | 2    | 2    | 3    |
| CO3    | 3   | 3   | 3   | 1   | 3   | 3    | 3    | 3    | 3    |

| 1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation |                    |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|--|
|                                                                         |                    |  |  |  |  |  |  |  |
|                                                                         |                    |  |  |  |  |  |  |  |
| Name & Sign of Program Coordinator                                      | Sign & Seal of HoD |  |  |  |  |  |  |  |



| Effective from Session: 2024-25 |                                                           |                                              |                                                                                                                                                                             |                 |                    |          |     |  |  |  |
|---------------------------------|-----------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|----------|-----|--|--|--|
| Course Code                     | B030602T / MT325                                          | Title of the Course                          | Numerical Analysis & Operation<br>Research                                                                                                                                  | L               | Т                  | Р        | С   |  |  |  |
| Year                            | Third                                                     | Semester                                     | Sixth                                                                                                                                                                       |                 |                    |          |     |  |  |  |
| Pre-Requisite                   | Knowledge of errors<br>and system of linear<br>equations. | nd system of linear Co-requisite None        |                                                                                                                                                                             |                 |                    |          | 4   |  |  |  |
| Course Objectives               | course will further dev<br>topics introduced will         | velop understanding the serve as basic tools | skills to apply the basic knowledge of Nu<br>e concepts of Operation Research and t<br>for specialized studies in science fiel<br>explore subject knowledge into their resp | heir a<br>ld. A | pplicat<br>fter su | tions. T | The |  |  |  |

|     | Course Outcomes                                                                                                                    |  |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| CO1 | The aim of this course is to teach the student the application of various numerical technique for variety of problems occurring in |  |  |  |  |  |  |  |
|     | daily life. At the end of the course the student will be able to understand the basic concept of Numerical Analysis and to solve   |  |  |  |  |  |  |  |
|     | algebraic and differential equation.                                                                                               |  |  |  |  |  |  |  |
| CO2 | The main outcome will be that students will be able to handle problems and finding approximated solution. Later he can             |  |  |  |  |  |  |  |
|     | opt for advance course in Numerical Analysis in higher Mathematics.                                                                |  |  |  |  |  |  |  |
| CO3 | The student will be able to solve various problems based on linear programming. After successful completion of this paper          |  |  |  |  |  |  |  |
|     | will enable the students to apply the basic concepts of operations research.                                                       |  |  |  |  |  |  |  |

| Part-A   |                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        |  |  |  |  |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--|--|--|--|--|--|
|          | Numerical Analysis                                                                                                                                                                                                                                                                                                                                                                                               |         |        |  |  |  |  |  |  |
| Unit No. | it No. Content of Unit                                                                                                                                                                                                                                                                                                                                                                                           |         |        |  |  |  |  |  |  |
| I        | Solution of equations: bisection, Secant, Regular Falsi, Newton Raphson's method, Newton's method for multiple roots, Interpolation, Lagrange and Hermite interpolation, Difference schemes, Divided differences, Interpolation formula using differences.                                                                                                                                                       | 8       | 1 & 2  |  |  |  |  |  |  |
| п        | Numerical differentiation, Numerical Quadrature: Newton Cotes Formulas, Gaussian Quadrature<br>Formulas, System of Linear equations: Direct method for solving systems of linear equations<br>(Gauss elimination, LU Decomposition, Cholesky Decomposition), Iterative methods (Jacobi,<br>Gauss Seidel, Relaxation methods). The Algebraic Eigen value problem: Jacobi's method, Givens<br>method,Power method. | 8       | 1&2    |  |  |  |  |  |  |
| III      | Numerical solution of Ordinary differential equations: Euler method, single step methods,<br>Runge-Kutta method, Multi-step methods: Milne-Simpson method, Types of approximation:<br>Last Square polynomial approximation, Uniform approximation, Chebyshev polynomial<br>approximation.                                                                                                                        | 7       | 1&2    |  |  |  |  |  |  |
| IV       | Difference Equations and their solutions, Shooting method and Difference equation method for solving Linear second order differential equation with boundary conditions of first, second and third type.                                                                                                                                                                                                         | 7       | 1 & 2  |  |  |  |  |  |  |
|          | Part-B<br>Operation Research                                                                                                                                                                                                                                                                                                                                                                                     |         |        |  |  |  |  |  |  |
| Unit No. | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                  | Contact | Mapped |  |  |  |  |  |  |

| Unit No. | Content of Unit                                                                                                                            | Hrs. | CO |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------|------|----|
|          | Introduction, Linear programming problems, statement and formation of general linear                                                       | 8    | 2  |
|          | programming problems, graphical method, slack and surplus variables, standard and matrix forms                                             |      | 3  |
| V        | of linear programming problem, basic feasible solution.                                                                                    |      |    |
|          | Convex sets, fundamental theorem of linear programming, basic solution, Simplex method,                                                    | 8    | 3  |
| VI       | introduction to artificial variables, two phase method Big-M method and their comparison.                                                  |      | 5  |
| VII      | Resolution of degeneracy, duality in linear programming problems, primal dual relationships, revised simplex method, sensitivity analysis. | 7    | 3  |
| VIII     | Transportation problems, assignment problems.                                                                                              | 7    | 3  |

| Refer | Reference Books: Part-A                                                                                 |  |  |  |  |  |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 1.    | Numerical Methods for Engineering and scientific computation by M. K. Jain, S.R.K. Iyengar & R.K. Jain. |  |  |  |  |  |  |  |  |
| 1.    | Introductory methods of Numerical Analysis by S. S. Sastry                                              |  |  |  |  |  |  |  |  |
| 2.    | 2. Suggested digital plateform: NPTEL/SWAYAM/MOOCS.                                                     |  |  |  |  |  |  |  |  |
| Refer | Reference Books: Part-B                                                                                 |  |  |  |  |  |  |  |  |
| 1.    | 1. Taha, Hamdy H, "Opearations Research- An Introduction ", Pearson Education.                          |  |  |  |  |  |  |  |  |

| 2. | Gupta, Prem Kumar, Initials, " Operations Research", Chand (S) & Co Ltd, India.                               |
|----|---------------------------------------------------------------------------------------------------------------|
| 3. | Hillier Frederick S and Lieberman Gerald J., "Operations Research", McGraw Hill Publication                   |
| 4. | Winston Wayne L., "Operations Research: Applications and Algorithms", Cengage Learning, 4th Edition.          |
| 5. | Hira D.S. and Gupta Prem Kumar, "Problems in Operations Research: Principles and Solutions", S Chand & Co Ltd |
| 6. | Kalavathy S., "Operations Research", S Chand.                                                                 |
| 7. | Suggested digital plateform:NPTEL/SWAYAM/MOOCs.                                                               |

| PO-PSO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 |
|--------|-----|-----|-----|-----|-----|------|------|------|------|
| СО     | 101 | 102 | 100 | 101 | 100 | 1501 | 1002 | 1500 | 1501 |
| CO1    | 3   | 3   | 3   | 1   | 2   | 2    | 3    | 3    | 3    |
| CO2    | 3   | 3   | 3   | 1   | 2   | 2    | 3    | 3    | 3    |
| CO3    | 2   | 2   | 3   | 1   | 2   | 2    | 2    | 3    | 3    |

| 1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation | on |
|-------------------------------------------------------------------------|----|
|-------------------------------------------------------------------------|----|

Name & Sign of Program Coordinator

Sign & Seal of HoD



| Effective from Session: 2024-25 |                                                    |                                                                                                                                                                                                                                                                                                                          |                                       |   |   |   |   |  |  |  |
|---------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---|---|---|---|--|--|--|
| Course Code                     | B030603P / MT326                                   | Title of the Course                                                                                                                                                                                                                                                                                                      | Practical Using<br>Mathematica/MATLAB | L | Т | Р | С |  |  |  |
| Year                            | Third                                              | Semester Sixth                                                                                                                                                                                                                                                                                                           |                                       |   |   |   |   |  |  |  |
| Pre-Requisite                   | Knowledge of numerical analysis. Co-requisite None |                                                                                                                                                                                                                                                                                                                          |                                       |   |   | 4 | 4 |  |  |  |
| Course Objectives               | equations, system of li                            | The main objective of the course is to equip the student to solve the transcendental and algebraic quations, system of linear equations, ordinary differential equations, Interpolation, Numerical Integration, Method of finding Eigenvalue by Power method (up to $4 \times 4$ ), Fitting a Polynomial Function (up to |                                       |   |   |   |   |  |  |  |

| Unit No. | Topics                                                                                                                                                                                                                                                               | No. of<br>Lectures |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| I        | <b>Practical / Lab work to be performed in Computer Lab.</b><br>List of the practicals to be done using computer algebra software (CAS), for example R/Python/Mathematica/MATLAB/Maple/Maxima/Scilab etc<br>1. Solution of transcendental and algebraic equations by |                    |
|          | i) Bisection method                                                                                                                                                                                                                                                  |                    |
|          | ii) Newton Raphson method (Simple root, multiple roots, complex roots).                                                                                                                                                                                              |                    |
|          | iii) Secant method.                                                                                                                                                                                                                                                  |                    |
|          | <ul><li>iv) Regula Falsi method.</li><li>2. Solution of system of linear equations</li></ul>                                                                                                                                                                         |                    |
|          | i) LU decomposition method                                                                                                                                                                                                                                           |                    |
|          | ii) Gaussian elimination method                                                                                                                                                                                                                                      |                    |
|          | iii) Gauss-Jacobi method                                                                                                                                                                                                                                             |                    |
|          | iV) Gauss-Seidel method<br>3. Interpolation                                                                                                                                                                                                                          |                    |
|          | i) Lagrange Interpolation                                                                                                                                                                                                                                            |                    |
|          | <ul><li>ii) Newton's forward, backward and divided difference interpolations</li><li>4. Numerical Integration</li></ul>                                                                                                                                              |                    |
|          | i) Trapezoidal Rule                                                                                                                                                                                                                                                  |                    |
|          | ii) Simpson's one third rule                                                                                                                                                                                                                                         |                    |
|          | iii) Weddle's Rule                                                                                                                                                                                                                                                   |                    |
|          | iv) Gauss Quadrature                                                                                                                                                                                                                                                 |                    |
|          | 5. Method of finding Eigenvalue by Power method (up to $4 \times 4$ )                                                                                                                                                                                                |                    |
|          | 6. Fitting a Polynomial Function (up to third degree)                                                                                                                                                                                                                |                    |
|          | 7. Solution of ordinary differential equations                                                                                                                                                                                                                       |                    |
|          | i) Euler method                                                                                                                                                                                                                                                      |                    |
|          | ii) Modified Euler method                                                                                                                                                                                                                                            |                    |
|          | iii) Runge Kutta method (order 4)<br>The method of successive approximations (Picard)                                                                                                                                                                                |                    |

#### 1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD



| Image: Crystal Structure Lattice Translation vectors. Primitive and non-primitive and conspirative and space graps. Dand 3DB argues 120 and 3DB argues 120 and 3DB argues 120 and 3DB argues 120 and 3DB argues 130 argues 130 argues 130 argues 130 argues 130                                                                                                                                                                                                                                                                          |           | from Session: 20  |                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                                              |                                                                                            |                                                                        |                                                      |                                | -      | -          |        |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|--------------------------------|--------|------------|--------|-------------|
| Pre-Regulation         10-2 with Physics         Concervation         Passed BAS, 2 <sup>+</sup> , Year         Image: Name of the concervation of the conconcervatio concervation of the concervatio concervation of the                                                                                                                                                                                                                                                                                                   |           | Code              |                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                                              |                                                                                            | and Nuclear I                                                          | hysics                                               |                                |        |            |        | C<br>4      |
| Construction         concreted to gain the interrupt Numberly of Allo State and Nuclear Physics.           Construction         Understand the crystal geometry w.t.f symmetry operations.           Construction         Understand the crystal geometry w.t.f symmetry operations.           Construction         Understand the crystal geometry w.t.f symmetry operations.           Construction         Understand the crystal geometry w.t.f symmetry operations.         Understand the former and the decompt of response and                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | uisite            | 10+2                                           | with Physics                                                                                                                                                                                                                                                                                                                 | Co-requ                                                                                | isite                                                                                        | Passed B.Sc                                                                                |                                                                        |                                                      |                                |        | _          |        |             |
| Comparison         Comparison           Comparison         Comparison           Comparison         Comparison           Comparison         Comparison           Comparison         Comparison           Comparison         Comparison           Comparison         Comparison         Comparison           Comparison         Comparison         Comparison         Comparison           Comparison         Comparison         Comparison         Comparison         Comparison           Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comparison         Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Course O  | Objectives        |                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                                              |                                                                                            |                                                                        | Nuclear Physics.                                     | At the end of t                | he cou | irse the s | tudent | s are       |
| Control Linderstand the crystal generative vector and production.         Control Compression with the concept of activitical lattice.         Control The Electron and Band Beerines in understanding the crystal properties.         Control The Electron and Band Beerines in understanding the crystal properties.         Control The Electron and Band Beerines in understanding the crystal properties.         Control The Electron and Band Beerines in understanding the crystal properties.         Control The Electron and applications of those and detectors.         Control The Clystal The Electron and applications of those and detectors.         Control The Clystal The Clystal structure. Lattice translation vectors, Printitive and non-printitive cells. Symmetry operations, Point group and Space group. 2D and 3D Brivial lattice. Panneters of calle lattice. Lattice planes and Clystal inclusters. HCP and PCC. Downod. Child. Zmac. Balphide, Softman and Bried Beergergergergergergergergergergergergerg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | •                 | expe                                           | cted to gain the                                                                                                                                                                                                                                                                                                             | thorougn knov                                                                          | <u> </u>                                                                                     |                                                                                            | ear Physics.                                                           |                                                      |                                |        |            |        |             |
| CODe<br>Only Survey cover of X ray diffraction and the concept of respinged lattice.         University of the structure of the set of                                                                                                                                                                                                                                                                                 | CO1       | Understand the    | crystal geom                                   | etrv wrt symn                                                                                                                                                                                                                                                                                                                | netry operation                                                                        |                                                                                              | Outcomes                                                                                   |                                                                        |                                                      |                                |        |            |        |             |
| COM         Recipitive the importance of free Flaction and Band Indexis we accoss.           Comparison of the Visition and Recipitar excitors.           Content of the Unit Selection and Recipitar excitors.           Content of the Unit Selection and Recipitar excitors.           Content of the Unit Selection and Recipitar excitors.           Content of Unit Selection Recipitar excitors.           Content of Unit Selection Recipitar excitors.           Content of Unit Selection Recipitar excitors.           Content of Decipitar excitors.           Content of Decipitar excitors.           Content of Unit Selection Recipitar excitors.           Content of Decipitar Excitors. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>lattice.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                   |                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                                              | lattice.                                                                                   |                                                                        |                                                      |                                |        |            |        |             |
| Construction for nuclear forces and neiloar rescions.           Comprehend the vortiking and applications of nuclear accelerators and detertors.           Comprehend the vortiking and applications of nuclear accelerators and detertors.           Comprehend the vortiking and applications of nuclear accelerators and detertors.           Comprehend the vortiking and applications of nuclear accelerators and detertors.         Contact III.           Nuclear the class finand Crystal structure. Lattice translation vectors. Primitive colls. Symmetry of the structure interaction. Foint group and Space group. Data DB Darvial lattice. Reprinces I colls. Lattice Science III.         Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | <i>.</i>          |                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                                              |                                                                                            |                                                                        |                                                      |                                |        |            |        |             |
| Constraint the importance of models models and moder maxims.         Constraint of the c                                                                                                                                                                                                                                                                                  |           |                   |                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                                              | iding the crysta                                                                           | il properties.                                                         |                                                      |                                |        |            |        |             |
| Content the classification and properties of basic building blacks of nature.         Content of Unit         Content on Unit         Content Content on Unit         Conten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | Understand the    | importance o                                   | f nuclear model                                                                                                                                                                                                                                                                                                              | ls and nuclear 1                                                                       | reactions.                                                                                   |                                                                                            |                                                                        |                                                      |                                |        |            |        |             |
| Unit<br>No.         Title of the Unit         Content of Unit         Content of Unit         Content of Unit         Content of Unit         Mage           1         Crystal<br>Structure         Lattice, Basis and Crysul structure, Lattice translation vectors, Printitive and non-printive calls, Symmetry<br>on Miller indice, Sample crysul structures - HCP and FCC, Damond, Cubic, Zanc Sulphide, Softum         7         C           2         Crystal<br>Diffraction         Amount of Content of Unit         7         C           3         Crystal Diffraction and Bragg's law. Experimental diffraction methods - Law, Roating crysul and Powder<br>methods. Derivation of Scatteed wave amplitude. Regineed latice, Neifraction and<br>between Direct and Resipneed latice. Diffraction Form fator and Units. To Content, Magile, and Congensitivity and Bulk method and Billum rates. Response<br>Crystal Scattee wave and Donal and the Content. Response<br>crystals. Cohesive ceregy, and evaluation of Madelung constant.         7         C           4         Lattice<br>Vibrations         Crystal Binking         Content families contains. Checkwo ceregy, and cohesis and the constant of Madelung constant.         7         C           4         Lattice Vibrations and Constant and Constant and Latter vibrations of Madelung constant.         9         C           5         and Radioutivity Difference         Free Electron metrors. Free metrors.         Nonclear Force         9         C           6         Nuclear Force         Content of Contexis and Contring Gradian decory and Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                   |                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                                              |                                                                                            |                                                                        |                                                      |                                |        |            |        |             |
| No.         Unite of the Curi         Content of Unit         Mark         Mark <t< th=""><th></th><th>Understand the</th><th>ciassification</th><th>and properties</th><th>of basic building</th><th>ing DIOCKS OF Ha</th><th>ture.</th><th></th><th></th><th></th><th></th><th></th><th>14</th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | Understand the    | ciassification                                 | and properties                                                                                                                                                                                                                                                                                                               | of basic building                                                                      | ing DIOCKS OF Ha                                                                             | ture.                                                                                      |                                                                        |                                                      |                                |        |            | 14     |             |
| Image: state structure in the state of the stat                                                                                                                                                                                                                                                                         |           | Title of the Un   | it                                             |                                                                                                                                                                                                                                                                                                                              |                                                                                        | Cont                                                                                         | tent of Unit                                                                               |                                                                        |                                                      |                                |        |            |        | opea<br>O   |
| 2         Crystal<br>Diffraction         X-ray diffraction and Brag's law. Experimental diffraction methods - Law. Rotainer crystal and Powder<br>hetween Direct and Reciprocal latice. Diffraction conditions, Evald's method and Brilloum zones. Reciprocal<br>between Direct and Reciprocal latice. Diffraction conditions, Evald's method and Brilloum zones. Reciprocal<br>hetween Direct and Reciprocal latice. Diffraction conditions, Evald's method and Brilloum zones. Reciprocal<br>hetween Direct and Reciprocal latice. Diffraction conditions, Evald's method and Brilloum zones. Reciprocal<br>hetween Direct and Reciprocal latice. Diffraction conditions, Evald's method and Brilloum zones. Reciprocal<br>heter Sci. BC: And Sci. Basis Conduction and Crystal Structure factor.         7         C           3         Crystal Binding<br>Crystal Binding         Classification of Crystals of the Basis of Bonding - Jonic. Covident, Metallic, van der Waals - London and Heter Reciproci Difference Sci. Difference Sc                                                                                                                                                                                                                                                                                                                                 | 1         |                   | operation and M                                | ons, Point grou                                                                                                                                                                                                                                                                                                              | p and Space gro<br>imple crystal                                                       | oup. 2D and 3D structures - H                                                                | Bravais lattice                                                                            | e. Parameters o                                                        | f cubic lattices.                                    | Lattice planes                 |        | 7          | C      | D1          |
| 3       Crystal Binding       Classification of Crystals on the Basis of Bonding - Jonic, Covalent, Menläic, van der Waals Molecular and<br>Hydrogen bondel. Crystals of interaction, Equilibrium lattice constant, Cohesive energy and Compressibility and Bulk modulus. Jonic       7       C         4       Lattice       February Line Cohesive energy. Madelung energy and evaluation of Madelung constant.       7       C         4       Lattice       Vibrations       Lattice vibrations: Lattice vibrations for linear mone and di atomic chains, Dispersion relations and<br>Accoustical and Optical branches (qualitative tratmation) (Qualitative description of Bonoms in solds. Lattice<br>Precedenci Drugority, Dulong-Petit's law and Einstein's theory of Lattice heat capacity of conduction electrons, Paramagnetic<br>encertain theorem, Scherker, Paramagnetic dipole<br>susceptibility of conduction electrons, Paramagnetic dipole<br>and Theory: Origin of band theory, Qualitative tratmatine, Richaid, Paramagnetic dipole<br>moment vector and electric quadrupole moment tensor.       9       Q         5       Nuclear Forces       Radioactive Drugs: Nuclear stability, basis ideas about beta minus decay, deta duccy,<br>gamma decay and electric quadrupole moment tensor.       9       Q         6       Nuclear Morels       Nuclear stability, basis ideas about beta minus decay, deta line decay,<br>gamma decay and electron capture, findimental laws of andiaccive distance frage. Japacity errices.       9       Q         7       Accelerators and<br>Detectors and<br>Detectors: Beth's notation, types of nuclear reaction, Conservation laws, Mesons, Baryons and<br>Radioactive Basis duno intrinsic-spin, mass, interaction and life                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2         |                   | X-ray<br>method<br>betwee                      | diffraction and<br>ls. Derivation on<br>Direct and Re                                                                                                                                                                                                                                                                        | Bragg's law.<br>of scattered wa<br>eciprocal lattice                                   | Experimental on two amplitude.<br>e. Diffraction co                                          | Reciprocal lat<br>onditions, Ewa                                                           | tice, Reciproca<br>ld's method an                                      | l lattice vectors<br>d Brillouin zone                | and relation                   |        | 7          | C      | 02          |
| 4       Accustical and Optical branches (qualitative teatment). Qualitative description of Phonons in solids. Lattice heat capacity. Optical branches (qualitative teatment). Qualitative description of Phonons in solids. Lattice heat capacity (conduction electrons and Half effect in metals. Band Theory: Orgin of band theory, Qualitative idea of Bloch theorem, Kronig-Penney model, Effective metals and a diffection and Clancer photos and Half effect in metals. Band Theory: Orgin of band theory, Qualitative idea of Bloch theorem, Kronig-Penney model, Effective metals of an electron and Concerpt of Holes and Classification of solids on the basis of band theory. Succers forces: General characteristic of nuclear force and Deuteron ground state properties. Nuclear Forces: General characteristic of nuclear force and Deuteron ground state properties of Nuclears: Ender and electric quadrupole moment tensor.       9       C         6       Nuclear Modes and Nuclear Modes and Nuclear Forces: General characteristic of nuclear force and Deuteron ground state properties. Nuclear Reactions Bether's notion. types of nuclear saction. Conservation laws, Cross-section of nuclear Reactions. Theory of nuclear fission (qualitative). Nuclear reactors and Nuclear Reactions of Um de Grand Evelower and applications of GM counter, Semiconductor detector, Scintillation counter and Baryon Resonances. Conservation laws, Cross-section of succers and Succers. Theory, working and applications of GM counter, Semiconductor detector, Scintillation counter and Baryon Resonances. Conservation laws, Cross-section of elementary. Particles Noted Bate Physics'', Wiley India Private Limited, 2012. Re       Image: Semiser Semiseres Semiser Semiser Semiseres Semiser Semiser Semiser Se                                                                                                                                                                                                                                                                                                                                                        | 3         | Crystal Bindin    | g Classif<br>Hydrog<br>interact<br>crystals    | ication of Cryst<br>gen bonded. Cr<br>tion, Equilibriu<br>s, Cohesive energy                                                                                                                                                                                                                                                 | als on the Basi<br>ystals of inert<br>m lattice con<br>rgy, Madelung                   | is of Bonding -<br>gases, Attract<br>stant, Cohesive<br>energy and eva                       | · Ionic, Covale<br>tive interaction<br>e energy and<br>luation of Mac                      | nt, Metallic, va<br>1 (van der Wa<br>Compressibilit<br>lelung constant | n der Waals (Maals - London) a<br>y and Bulk m       | nd Repulsive<br>odulus. Ionic  |        | 7          | C      | D3          |
| Succear Forces<br>and Radioactive<br>Drcays         General Properties of Nucleurs: Mass, binding energy, radii, density, angular momentum, magnetic dipole<br>moment vector and electric and quadrupole moment tensor.         9         C           6         Nuclear Models<br>and Nuclear Forces: General characteristic of nuclear force and Deuteron ground state properties.<br>Radioactive Series.         9         C           6         Nuclear Models<br>and Nuclear<br>Reactions         Nuclear Models: Liquid drop model and Bethe-Weizsacker mass formula. Single particle shell model (the<br>level scheme in the context of reproduction of magic numbers included).<br>Nuclear Reactions: Densory of nuclear foreproduction of magic numbers included).<br>Nuclear Nuclear Nuclear Tusion.         9         C           7         Accelerators and<br>Detectors         Performantic transformation of magic numbers included).<br>Nuclear Reactions: Theory, working and applications of GM counter, Semiconduct detector, Scintillation counter and<br>Baryon Resonances. Conservation laws for mass-energy, linear momentum, angular momentum, electric<br>charge, baryon Resonances. Conservation laws for mass-energy, linear momentum, angular momentum, electric<br>charge, baryon. Charge, leptonic charge, leptonic charge, isospin and strageness. Concept of Quark model.         6         C           8         Elementary<br>Particles         Fundamental India Limited, 1993         5         5         5           1         Charles Khen, "Introductory Nuclear Physics", Miley India Private Limited, 2012, &:         5         5         5         5         5         5         5         5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4         |                   | Acoust<br>heat ca<br>Free E<br>suscept<br>Band | ical and Optica<br>pacity, Dulong-<br><b>lectron Theor</b><br>ibility of condu<br><b>Theory:</b> Origin                                                                                                                                                                                                                      | l branches (qu<br>Petit's law and<br>y: Fermi energ<br>ction electrons<br>of band theo | alitative treatm<br>Einstein's theo<br>y, Density of s<br>and Hall effect<br>ry, Qualitative | ent). Qualitative<br>ory of lattice he<br>tates, Heat cap<br>t in metals.<br>idea of Bloch | ve description<br>eat capacity.<br>acity of condu                      | of Phonons in s<br>ction electrons,<br>nig-Penney mo | olids. Lattice<br>Paramagnetic |        | 9          | C      | D4          |
| Auclear Models<br>and Nuclear<br>Reactions         Nuclear Models<br>level scheme in the context of reproduction of magic numbers included).<br>Nuclear Reactions: Bethe's notation, types of nuclear reaction, Conservation laws, Cross-section of nuclear<br>reaction, Theory of nuclear fission (qualitative), Nuclear reactors, Conservation laws, Cross-section of nuclear<br>reaction, Theory of nuclear fission (qualitative), Nuclear reactors, Nuclear fission.         9         C           7         Accelerators and<br>Detectors: Theory, working and applications of GM counter, Semiconductor detector, Scintillation counter and<br>Wilson cloud chamber.         6         CC           8         Elementary<br>Particles based on intrinsic-spin, mass, interaction and lifetime. Families of Leptons, Mesons, Baryons and<br>Baryon Resonances. Concept of Auguar momentum, angular momentum, electric<br>charge, baryonic charge, leptonic charge, isospin and strangeness. Concept of Quark model.         6         CC           8         Elementary<br>Particles based on intrinsic-spin, mass, interaction and lifetime. Families of Leptons, Mesons, Baryons and<br>Baryon Resonances. Concept of Nuclear Mesore mergy. Ninear momentum, angular momentum, electric<br>charge, baryonic charge, leptonic charge, isospin and strangeness. Concept of Quark model.         6         CC           8         Elementary<br>Particles         Fundamental India Limited, 1993         5         5           1.         Charles Kittel, "Introductor Nuclear Physics", McGraw Hill, 2017         5         5         5         5           8         Bermard L, Ochen, "Concepts of Nuclear Physics", McGraw Hill, 2017         5 <td< td=""><td>5</td><td>and Radioactiv</td><td>s momen<br/>ve Nuclea<br/>Radioa</td><td>al Properties of<br/>at vector and ele<br/>ar Forces: Gene<br/>active Decays:</td><td>of Nucleus: M<br/>ctric quadrupo<br/>eral characterist<br/>Nuclear stabil</td><td>ass, binding en<br/>le moment tens<br/>ic of nuclear fo<br/>ity, basic ideas</td><td>nergy, radii, de<br/>or.<br/>orce and Deuter<br/>s about beta n</td><td>nsity, angular<br/>on ground state<br/>ninus decay, b</td><td>momentum, ma<br/>e properties.<br/>eta plus decay,</td><td>alpha decay,</td><td></td><td>9</td><td>C</td><td>D5</td></td<> | 5         | and Radioactiv    | s momen<br>ve Nuclea<br>Radioa                 | al Properties of<br>at vector and ele<br>ar Forces: Gene<br>active Decays:                                                                                                                                                                                                                                                   | of Nucleus: M<br>ctric quadrupo<br>eral characterist<br>Nuclear stabil                 | ass, binding en<br>le moment tens<br>ic of nuclear fo<br>ity, basic ideas                    | nergy, radii, de<br>or.<br>orce and Deuter<br>s about beta n                               | nsity, angular<br>on ground state<br>ninus decay, b                    | momentum, ma<br>e properties.<br>eta plus decay,     | alpha decay,                   |        | 9          | C      | D5          |
| Accelerators and<br>Detectors         Accelerators: Theory, working and applications of Van de Graaff accelerator, Cyclotron and Synchrotron.<br>Detectors: Theory, working and applications of GM counter, Semiconductor detector, Scintillation counter and<br>Nison cloud chamber.         6         C           8         Elementary<br>Particles         Fundamental interactions and their mediating quant. Concept of antiparticles. Classification of elementary<br>particles based on intrinsic-spin, mass, interaction and lifetime, Families of Leptons, Mesons, Baryons, Baryons                                                                                                                                                                                                                                                                                                                                 | 6         | and Nuclear       | Is Nuclea<br>level so<br>Nuclea                | r Models: Liq<br>cheme in the con<br>r Reactions: E                                                                                                                                                                                                                                                                          | uid drop mode<br>ntext of reprodu<br>Bethe's notation                                  | el and Bethe-W<br>uction of magic<br>n, types of nuc                                         | veizsacker mas<br>numbers inclu<br>lear reaction, (                                        | ss formula. Sin<br>ded).<br>Conservation la                            | gle particle she<br>aws, Cross-secti                 | ll model (the                  |        | 9          | C      | D6          |
| 8       Fundamental interactions and their mediating quanta. Concept of antiparticles. Classification of elementary particles based on intrinsic-spin, mass, interaction and lifetime. Families of Leptons, Mesons, Baryons and Baryon Resonances. Conservation laws for mass-energy, linear momentum, angular momentum, electric charge, baryonic charge, leptonic charge, isospin and strangeness. Concept of Quark model.       6       C         Reference Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7         |                   | nd Accele<br>Detecte                           | rators: Theory,<br>ors: Theory, wo                                                                                                                                                                                                                                                                                           | working and a working and a                                                            | pplications of V                                                                             | Van de Graaff                                                                              | accelerator, Cy                                                        | clotron and Syn                                      | chrotron.<br>n counter and     |        | 6          | C      | <b>D</b> 7  |
| Reference Books:         1. Charles Kittel, "Introduction to Solid State Physics", Wiley India Private Limited, 2012, &e         2. A.J. Dekker, "Solid State Physics", Macmillan India Limited, 1993         3. R.K. Puri, V.K. Babbar, "Solid State Physics", S. Chand Publishing, 2015         4. Kenneth S. Krane, "Introductory Nuclear Physics", Wiley India Private Limited, 2008         5. Bernard L. Cohen, "Concepts of Nuclear Physics", McGraw Hill, 2017         6. S.N. Ghoshal, "Nuclear Physics", S. Chand Publishing, 2019 <b>e-Learning Source:</b> 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/         2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd         3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx         4. Swayam Prabha - DTH Channel, https://www.swayampabha.gov.in/index.php/program/current he/8         Course Articulation Matrix: (Mapping of COs with POs and PSOs) <b>PO-PSO</b> PO1       PO2       PO3       PO4       PO5       PO6       PO7       PSO1       PSO2       PSO3       1         CO2       3       2       -       -       -       3       3       -       1         CO4       3       2       -       -       -       3       3       -       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8         | •                 | Fundar<br>particle<br>Baryon                   | indamental interactions and their mediating quanta. Concept of antiparticles. Classification of elementary<br>articles based on intrinsic-spin, mass, interaction and lifetime. Families of Leptons, Mesons, Baryons and<br>aryon Resonances. Conservation laws for mass-energy, linear momentum, angular momentum, electric |                                                                                        |                                                                                              |                                                                                            |                                                                        |                                                      |                                |        | 6          | C      | <b>D</b> 8  |
| 2. A.J. Dekker, "Solid State Physics", Macmillan India Limited, 1993         3. R.K. Puri, V.K. Babbar, "Solid State Physics", S. Chand Publishing, 2015         4. Kenneth S. Krane, "Introductory Nuclear Physics", Wiley India Private Limited, 2008         5. Bernard L. Cohen, "Concepts of Nuclear Physics", McGraw Hill, 2017         6. S.N. Ghoshal, "Nuclear Physics", S. Chand Publishing, 2019         e-Learning Source:         1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/         2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/mptelhrd         3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx         4. Swayam Prabha - DTH Channel, https://www.swamprabha.gov.in/index.php/program/current_he/8         PO-PSO         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PSO1       PSO2       PSO3       P         CO1       3       2       -       -       -       3       3       -       1       1         CO2       3       2       -       -       -       3       3       -       1       1         CO4       3       2       -       -       -       3       3       -       1       1 <t< td=""><td></td><td></td><td></td><td>, ,</td><td></td><td><u> </u></td><td>U</td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                   |                                                | , ,                                                                                                                                                                                                                                                                                                                          |                                                                                        | <u> </u>                                                                                     | U                                                                                          |                                                                        |                                                      |                                | •      |            |        |             |
| 3. R.K. Puri, V.K. Babbar, "Solid State Physics", S. Chand Publishing, 2015         4. Kenneth S. Krane, "Introductory Nuclear Physics", Wiley India Private Limited, 2008         5. Bernard L. Cohen, "Concepts of Nuclear Physics", McGraw Hill, 2017         6. S.N. Ghoshal, "Nuclear Physics", S. Chand Publishing, 2019         e-Learning Source:         1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/         2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd         3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx         4. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current hc/8         PO-PSO       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PS01       PS02       PS03       1         CO1       3       2       -       -       -       3       3       -       1       1         CO2       3       2       -       -       -       3       3       -       1       1         CO3       3       2       -       -       -       3       3       -       1       1         CO4       3       2       -       -       -       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                   |                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                                              | , 2012, 8e                                                                                 |                                                                        |                                                      |                                |        |            |        |             |
| 5. Bernard L. Cohen, "Concepts of Nuclear Physics", McGraw Hill, 2017         6. S.N. Ghoshal, "Nuclear Physics", S. Chand Publishing, 2019         e-Learning Source:         1. MIT Open Learning - Massachusetts Institute of Technology, https://www.youtube.com/user/nptelhrd         2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd         3. Uttar Pradesh Higher Education Digital Library, http://heecontent.usdc.gov.in/SearchContent.aspx         4. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current he/8         PO-PSO         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PSO1       PSO2       PSO3       PI         CO1       3       2       -       -       -       3       3       -       1       1         CO2       3       2       -       -       -       3       3       -       1       1         CO3       3       2       -       -       -       3       3       -       1       1         CO4       3       2       -       -       -       3       3       -       3       3       -       3       3       -       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3. R.K.   | Puri, V.K. Babbar | r, "Solid Stat                                 | e Physics", S. C                                                                                                                                                                                                                                                                                                             | hand Publishin                                                                         | ig, 2015                                                                                     |                                                                                            |                                                                        |                                                      |                                |        |            |        |             |
| 6. S.N. Ghoshal, "Nuclear Physics", S. Chand Publishing, 2019         e-Learning Source:         1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/         2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd         3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx         4. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current he/8         POPSO         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PS01       PS02       PS03       P         CO1       3       2       -       -       -       3       3       -       1         CO2       3       2       -       -       -       3       3       -       1         CO3       3       2       -       -       -       3       3       -       1         CO4       3       2       -       -       -       3       3       -       1       1         CO3       3       2       -       -       -       3       3       -       1       1         CO4       3       2       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                   |                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                                              | 2008                                                                                       |                                                                        |                                                      |                                |        |            |        |             |
| e-Learning Source:         1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/         2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd         3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx         4. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8         Course Articulation Matrix: (Mapping of COs with POs and PSOs)         PO-PSO         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PSO1       PSO2       PSO3       P         Course Articulation Matrix: (Mapping of COs with POs and PSOs)         PO-PSO         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PSO1       PSO2       PSO3       P         CO1       3       2       -       -       -       3       3       -       1       1         CO2       3       2       -       -       -       3       3       -       1       1         CO3       3       2       -       -       -       3       3       -       3       3       -       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | ,                 |                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                        | 2017                                                                                         |                                                                                            |                                                                        |                                                      |                                |        |            |        |             |
| 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd.         3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx         4. Sway=Prabha - DTH Channel, https://www.sway=mprabha.gov.in/index.php/program/current he/8         Course Articulation Matrix: (Mapping COS with POS and PSOs)         PO-PSO         PO-PSO       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PSO1       PSO2       PSO3       PI         CO1       3       2       -       -       -       3       2       -       1       1         CO2       3       2       -       -       -       3       3       -       1       1         CO3       3       2       -       -       -       3       3       -       1       1         CO4       3       2       -       -       -       3       3       -       3       3       -       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e-Learniı | ng Source:        |                                                |                                                                                                                                                                                                                                                                                                                              | - <b>C</b> ·                                                                           |                                                                                              |                                                                                            |                                                                        |                                                      |                                |        |            |        |             |
| 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx         4. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current he/8         Course Articulation Matrix: (Mapping of COs with POs and PSOs)         PO-PSO         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PS01       PS02       PS03       P         Course Articulation Matrix: (Mapping of COs with POs and PSOs)         CO         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PS01       PS02       PS03       P         Course Articulation Matrix: (Mapping of COs with POs and PSOs)         CO1       3       2       -       -       -       3       3       2       -       1       1         CO2       3       2       -       -       -       3       3       -       1       1         CO2       3       2       -       -       -       3       3       -       1         CO3       3       2       -       -       -       3       3       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                   |                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                                              |                                                                                            | ser/nptelbrd                                                           |                                                      |                                |        |            |        |             |
| 4. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8         Course Articulation Matrix: (Mapping of COs with POs and PSOs)         PO-PSO       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PS01       PS02       PS03       P         CO1       3       2       -       -       -       3       2       -       1       1         CO2       3       2       -       -       -       3       3       -       1       1         CO3       3       2       -       -       -       3       3       -       1       1         CO3       3       2       -       -       -       3       3       -       1       1         CO3       3       2       -       -       -       3       3       -       1       1         CO4       3       2       -       -       -       3       3       -       3       3       -       3       3       -       3       3       -       3       3       -       3       3       -       3       3       -       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3. Uttar  | Pradesh Higher E  | Education Dig                                  | gital Library, <u>ht</u>                                                                                                                                                                                                                                                                                                     | tp://heecontent                                                                        | .upsdc.gov.in/S                                                                              | earchContent.a                                                                             | aspx                                                                   |                                                      |                                |        |            |        |             |
| PO-PSO<br>CO         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PS01         PS02         PS03         P           C01         3         2         -         -         -         3         2         -         1           C02         3         2         -         -         -         3         3         -         1           C03         3         2         -         -         -         -         3         3         -         1           C03         3         2         -         -         -         -         3         3         -         2         -           C04         3         2         -         -         -         -         3         3         -         3           C05         3         2         -         -         -         -         3         3         -         3           C06         3         2         -         -         -         3         3         -         1           C07         3         2         -         -         -         3         3         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4. Sway   | am Prabha - DTH   | I Channel, <u>ht</u>                           | tps://www.swa                                                                                                                                                                                                                                                                                                                | yamprabha.gov                                                                          | .in/index.php/p                                                                              | orogram/curren                                                                             | <u>he/8</u>                                                            |                                                      |                                |        |            |        |             |
| CO         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PS01         PS02         PS03         P           CO1         3         2         -         -         -         3         2         -         1           CO2         3         2         -         -         -         3         3         -         1           CO3         3         2         -         -         -         -         3         3         -         1           CO3         3         2         -         -         -         -         3         3         -         2         -           CO4         3         2         -         -         -         3         3         -         3           CO5         3         2         -         -         -         3         3         -         3           CO6         3         2         -         -         -         3         3         -         1           CO7         3         2         -         -         -         3         3         -         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                   |                                                |                                                                                                                                                                                                                                                                                                                              | Course Art                                                                             | ticulation Matri                                                                             | ix: (Mapping o                                                                             | f COs with POs                                                         | s and PSOs)                                          |                                | 1      |            |        |             |
| CO1       3       2       -       -       -       3       2       -       1         CO2       3       2       -       -       -       3       3       -       1       1         CO3       3       2       -       -       -       -       3       3       -       1       1         CO3       3       2       -       -       -       -       3       3       -       1       1         CO3       3       2       -       -       -       -       3       3       -       2       1         CO4       3       2       -       -       -       -       3       3       -       3       3         CO5       3       2       -       -       -       -       3       3       -       3       3         CO6       3       2       -       -       -       3       3       -       1       1         CO7       3       2       -       -       -       3       3       -       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | PO1               | PO2                                            | PO3                                                                                                                                                                                                                                                                                                                          | PO4                                                                                    | PO5                                                                                          | PO6                                                                                        | PO7                                                                    | PSO1                                                 | PSO2                           |        | PSO3       | Р      | <b>SO</b> 4 |
| CO3       3       2       -       -       -       3       3       -       2         CO4       3       2       -       -       -       3       3       -       2         CO4       3       2       -       -       -       3       3       -       3         CO5       3       2       -       -       -       3       3       -       3         CO6       3       2       -       -       -       3       2       -       1         CO7       3       2       -       -       -       3       3       -       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO1       |                   |                                                | -                                                                                                                                                                                                                                                                                                                            | -                                                                                      | -                                                                                            | -                                                                                          |                                                                        |                                                      | -                              |        | 1          |        | 2           |
| CO4       3       2       -       -       -       3       3       -       3         CO5       3       2       -       -       -       3       3       -       3       3         CO6       3       2       -       -       -       3       2       -       1         CO7       3       2       -       -       -       3       3       -       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                   |                                                | -                                                                                                                                                                                                                                                                                                                            | -                                                                                      | -                                                                                            | -                                                                                          |                                                                        |                                                      | -                              |        |            |        | 2           |
| CO5       3       2       -       -       -       3       3       -       3         CO6       3       2       -       -       -       3       2       -       1         CO7       3       2       -       -       -       3       3       -       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                   |                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                                              |                                                                                            |                                                                        |                                                      |                                |        |            |        | 2 2         |
| CO7         3         2         -         -         3         3         -         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO5       | 3                 | 2                                              |                                                                                                                                                                                                                                                                                                                              | -                                                                                      | -                                                                                            | -                                                                                          | 3                                                                      | 3                                                    | •                              |        | 3          |        | 2           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                   |                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                                              |                                                                                            |                                                                        |                                                      |                                |        |            | _      | 2 2         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO8       | 3                 | 2                                              | -                                                                                                                                                                                                                                                                                                                            | -                                                                                      | -                                                                                            | -                                                                                          | 3                                                                      | 3                                                    | -                              |        | 2          |        | 2           |



| Effective from Session: 2024-25 |                   |                                                                                                                                                                                                                                              |                                            |   |   |   |   |  |  |  |  |  |
|---------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---|---|---|---|--|--|--|--|--|
| Course Code                     | B010602T/PY315    | Title of the Course                                                                                                                                                                                                                          | Analog & Digital Principles & Applications | L | Т | Р | С |  |  |  |  |  |
| Year                            | Third             | Semester Sixth 4 0 0 4                                                                                                                                                                                                                       |                                            |   |   |   |   |  |  |  |  |  |
| Pre-Requisite                   | 10+2 with Physics | with Physics Co-requisite Passed B.Sc. 2 <sup>nd</sup> Year                                                                                                                                                                                  |                                            |   |   |   |   |  |  |  |  |  |
| Course Objectives               |                   | This course aims to give students the competence in Analog and Digital Electronics. At the end of the course the students are expected o gain the thorough knowledge of Analog and Digital Electronics and their applications in daily life. |                                            |   |   |   |   |  |  |  |  |  |

|     | Course Outcomes                                                      |
|-----|----------------------------------------------------------------------|
| CO1 | Study the drift and diffusion of charge carriers in a semiconductor. |
| CO2 | Understand the Two-Port model of a transistor.                       |
| CO3 | Study the working, properties and uses of FETs.                      |
| CO4 | Comprehend the design and operations of SCRs and UJTs.               |
| CO5 | Understand various number systems and binary codes.                  |
| CO6 | Familiarize with binary arithmetic.                                  |
| CO7 | Study the working and properties of various logic gates.             |
| CO8 | Comprehend the design of combinational and sequential circuits.      |

| Unit<br>No. | Title of the Unit                           | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Contact<br>Hrs. | Mapped<br>CO |
|-------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Semiconductor<br>Junction                   | Expressions for Fermi energy, Electron density in conduction band, Hole density in valence band, Drift of charge carriers (mobility & conductivity), Diffusion of charge carries and Life time of charge carries in a semiconductor. Work function in metals and semiconductors. Expressions for Barrier potential, Barrier width and Junction capacitance (diffusion & transition) for depletion layer in a PN junction. Expressions for Current (diode equation) and Dynamic resistance for PN junction.                                                                                                                                                                                                                                                                                                                                                       | 9               | CO1          |
| 2           | Transistor<br>Modelling                     | Transistor as Two-Port Network. Notation for dc & ac components of voltage & current. Quantitative discussion of Z, Y & h parameters and their equivalent two-generator model circuits. h-parameters for CB, CE & CC configurations. Analysis of transistor amplifier using the hybrid equivalent model and estimation of Input Impedance, Output Impedance and Gain (current, voltage & power).                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8               | CO2          |
| 3           | Field Effect<br>Transistors                 | JFET: Construction (N channel & P channel); Configuration (CS, CD & CG); Operation in different regions<br>(Ohmic or Linear, Saturated or Active or Pinch off & Break down); Important Terms (Shorted Gate Drain<br>Current, Pinch Off Voltage & Gate Source Cut-Off Voltage); Expression for Drain Current (Shockley<br>equation); Characteristics (Drain & Transfer); Parameters (Drain Resistance, Mutual Conductance or<br>Transconductance & Amplification Factor); Biasing w.r.t. CS configuration (Self Bias & Voltage Divider<br>Bias); Amplifiers (CS & CD or Source Follower); Comparison (N & P channels and BJTs & JFETs).<br><b>MOSFET:</b> Construction and Working of DE-MOSFET (N channel & P channel) and E-MOSFET (N channel<br>& P channel); Characteristics (Drain & Transfer) of DE-MOSFET and E-MOSFET; Comparison of JFFET and<br>MOSFET. | 8               | CO3          |
| 4           | Other Devices                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO4             |              |
| 5           | Number System                               | Sawtooth generators).<br>Number Systems: Binary, Octal, Decimal & Hexadecimal number systems and their inter conversion.<br>Binary Codes: BCD, Excess-3 (XS3), Parity, Gray, ASCII & EBCDIC Codes and their advantages & disadvantages. Data representation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6               | CO5          |
| 6           | Binary<br>Arithmetic                        | Binary Addition, Decimal Subtraction using 9's & 10's complement, Binary Subtraction using 1's & 2's compliment, Multiplication and Division.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5               | CO6          |
| 7           | Logic Gates                                 | Truth Table, Symbolic Representation and Properties of OR, AND, NOT, NOR, NAND, EX-OR & EX-NOR Gates. Implementation of OR, AND & NOT gates (realization using diodes & transistor). De Morgan's theorems. NOR & NAND gates as Universal Gates. Application of EX-OR & EX-NOR gates as pairty checker. Boolean Algebra. Karnaugh Map.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9               | C07          |
| 8           | Combinational<br>and Sequential<br>Circuits | <b>Combinational Circuits:</b> Half Adder, Full Adder, Parallel Adder, Half Substractor, Full Substractor. Data <b>Processing Circuits:</b> Multiplexer, Demultiplexer, Decoders & Encoders. <b>Sequential Circuits:</b> SR, JK & D Flip-Flops, Shift Register (transfer operation of Flip-Flops), and Asynchronous & Synchronous counters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10              | CO8          |
|             | e Books:                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |              |
|             |                                             | 'Electronic Devices and Circuit Theory'', Prentice-Hall of India Pvt. Ltd., 2015, 11e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |              |
|             |                                             | abrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |              |
|             |                                             | e, "Solid State Electronic Devices", Pearson Education India, 2015, 7e<br>mentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |              |
|             |                                             | Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |              |
|             |                                             | n Saha, "Digital Principles and Applications", McGraw Hill, 2010, 7e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |              |
|             |                                             | tal Electronics: An Introduction to Theory and Practice", Prentice-Hall of India Private Limited, 1982, 2e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |              |
| 8. R.P.J    | Jain, "Modern Digital Ele                   | ectronics", McGraw Hill, 2009, 4e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |
| e-Learni    | ng Source:                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |              |
|             |                                             | husetts Institute of Technology, https://openlearning.mit.edu/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |
|             |                                             | nology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |
| 3. Uttar    | Pradesh Higher Education                    | on Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |              |

4. Swayam Prabha - DTH Channel, <u>https://www.swayamprabha.gov.in/index.php/program/current\_he/8</u>

|              | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |      |      |      |      |  |  |  |
|--------------|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|------|------|------|------|--|--|--|
| PO-PSO<br>CO | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PSO1 | PSO2 | PSO3 | PSO4 |  |  |  |
| CO1          | 3                                                              | 2   | -   | -   | -   | -   | 3   | 2    | -    | 1    | 2    |  |  |  |
| CO2          | 3                                                              | 2   | -   | -   | -   | -   | 3   | 3    | -    | 1    | 2    |  |  |  |
| CO3          | 3                                                              | 2   | -   | -   | -   | -   | 3   | 3    | -    | 2    | 2    |  |  |  |
| CO4          | 3                                                              | 2   | -   | -   | -   | -   | 3   | 3    | -    | 3    | 2    |  |  |  |
| CO5          | 3                                                              | 2   | -   | -   | -   | -   | 3   | 3    | -    | 3    | 2    |  |  |  |
| CO6          | 3                                                              | 2   | -   | -   | -   | -   | 3   | 2    | -    | 1    | 2    |  |  |  |
| CO7          | 3                                                              | 2   | -   | -   | -   | -   | 3   | 3    | -    | 1    | 2    |  |  |  |
| CO8          | 3                                                              | 2   | -   | -   | -   | -   | 3   | 3    | -    | 2    | 2    |  |  |  |

|--|



| Effectiv        | Effective from Session: 2024-25                                                                                                                                                                                    |                   |                     |                                   |   |   |   |   |  |  |  |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|-----------------------------------|---|---|---|---|--|--|--|--|--|
| Course          | Code                                                                                                                                                                                                               | B010603P/PY316    | Title of the Course | Analog & Digital Circuits         | L | Т | Р | С |  |  |  |  |  |
| Year            |                                                                                                                                                                                                                    | Third             | Semester            | Sixth                             | 0 | 0 | 4 | 2 |  |  |  |  |  |
| Pre-Req         | quisite                                                                                                                                                                                                            | 10+2 with Physics | Co-requisite        | Passed B.Sc. 2 <sup>nd</sup> Year |   |   |   |   |  |  |  |  |  |
| Course          | <b>Course Objectives</b> The purpose of this undergraduate course is to impart practical knowledge/measurements in Analog and Digital Electronics through different experiments related to its theoretical course. |                   |                     |                                   |   |   |   |   |  |  |  |  |  |
| Course Outcomes |                                                                                                                                                                                                                    |                   |                     |                                   |   |   |   |   |  |  |  |  |  |
| CO1             |                                                                                                                                                                                                                    |                   |                     |                                   |   |   |   |   |  |  |  |  |  |
| COA             | <b>T 1 1 1 1 1 1</b>                                                                                                                                                                                               | 1                 | <b>c 1</b>          |                                   |   |   |   |   |  |  |  |  |  |

CO2 To calculate the hybrid parameter of a transistor from normal parameters. CO3

To study the behaviour of FET and MOSFET from their characteristic curves. To study the behaviour of SCR and UJT from their characteristic curves. CO4 CO5 To study the functioning the working of different logic gates

#### \* A student has to perform at least 7 experiments from the Offline Experiment List and 3 from the Online Virtual Lab Experiment List / Link.

| Experiment<br>No.                 | Title of the Experiment                                                                                                                                                                     | Aim of the Experiment (*Offline)                                                                 | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|--|
| 1                                 | Energy Band Gap                                                                                                                                                                             | To find the energy band gap of semiconductor by reverse saturation current method.               | 4               | CO1          |  |  |  |  |  |  |
| 2                                 | Four Probe Method                                                                                                                                                                           | To find the energy band gap of semiconductor by four probe method.                               | 4               | CO1          |  |  |  |  |  |  |
| 3                                 | Hybrid parameters of transistor                                                                                                                                                             | To find the hybrid parameters (h – parameters) of a transistor in Common Emitter Mode            | 4               | CO2          |  |  |  |  |  |  |
| 4                                 | Field Effect Transistor (FET)                                                                                                                                                               | To study the characteristics of FET.                                                             | 4               | CO3          |  |  |  |  |  |  |
| 5                                 | Metal Oxide Field Effect Transistor<br>(MOSFET)                                                                                                                                             | To study the characteristics of MOSFET.                                                          | 4               | CO3          |  |  |  |  |  |  |
| 6                                 | Silicon Controlled Rectifier                                                                                                                                                                | To study the characteristics of SCR.                                                             | 4               | CO4          |  |  |  |  |  |  |
| 7                                 | Unijunction Transistor                                                                                                                                                                      | To study the characteristics of UJT.                                                             | 4               | CO4          |  |  |  |  |  |  |
| 8                                 | <ul> <li>(iv) Ex-OR gate using TTL IC 7486</li> <li>(v) NAND gate and use as Universal gate using TTL IC 7400</li> <li>(vi) NOR gate and use as Universal gate using TTL IC 7402</li> </ul> |                                                                                                  |                 |              |  |  |  |  |  |  |
| Experiment<br>No.                 | Title of the Experiment                                                                                                                                                                     | Aim of the Experiment (*Online Virtual Lab)                                                      | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |  |
| 1                                 | Field Effect Transistor (FET)                                                                                                                                                               | ID-VD characteristics of Junction Field Effect Transistor (JFET)                                 |                 |              |  |  |  |  |  |  |
| 2                                 | Silicon Controlled Rectifier                                                                                                                                                                | Silicon Controlled Rectifier (SCR) characteristics                                               |                 |              |  |  |  |  |  |  |
| 3                                 | Unijunction Transistor                                                                                                                                                                      | Unijunction Transistor (UJT) and relaxation oscillator                                           |                 |              |  |  |  |  |  |  |
| 4                                 | Logic Gates                                                                                                                                                                                 | Verification and interpretation of truth table for AND, OR, NOT, NAND, NOR, Ex-OR, Ex- NOR gates |                 |              |  |  |  |  |  |  |
| 5                                 | Half Adder and Full Adder                                                                                                                                                                   | Construction of half and full adder using XOR and NAND gates and verification of its operation   |                 |              |  |  |  |  |  |  |
| 6                                 | Half Subtractor and Full Subtractor                                                                                                                                                         | To study and verify half and full subtractor                                                     |                 |              |  |  |  |  |  |  |
| 7                                 | Universal Gates                                                                                                                                                                             | Realization of logic functions with the help of Universal Gates (NAND, NOR)                      |                 |              |  |  |  |  |  |  |
| 8                                 | NOR Gate Latch                                                                                                                                                                              | Construction of a NOR gate latch and verification of its operation                               |                 |              |  |  |  |  |  |  |
| 9                                 | Flip Flops                                                                                                                                                                                  | Verify the truth table of RS, JK, T and D Flip Flops using NAND and NOR gates                    |                 |              |  |  |  |  |  |  |
| 10                                | Shift Registers                                                                                                                                                                             | Design and verify the 4-Bit Serial In - Parallel Out Shift Registers                             |                 |              |  |  |  |  |  |  |
| 11                                | Decoder and Encoders                                                                                                                                                                        | Implementation and verification of decoder or demultiplexer and encoder using logic gates        |                 |              |  |  |  |  |  |  |
| 12                                | Multiplexer and Demultiplexer                                                                                                                                                               | Implementation of 4x1 multiplexer and 1x4 demultiplexer using logic gates                        |                 |              |  |  |  |  |  |  |
| 13                                | Synchronous and Asynchronous Counter                                                                                                                                                        | Design and verify the 4-Bit Synchronous or Asynchronous Counter using JK<br>Flip Flop            |                 |              |  |  |  |  |  |  |
| 14                                | Binary to Gray and Gray to Binary conversion                                                                                                                                                | Verify Binary to Gray and Gray to Binary conversion using NAND gates only                        |                 |              |  |  |  |  |  |  |
| 15                                | 1-Bit and 2-Bit comparator                                                                                                                                                                  | Verify the truth table of 1-Bit and 2-Bit comparator using logic gates                           |                 |              |  |  |  |  |  |  |
| Reference Boo                     |                                                                                                                                                                                             |                                                                                                  |                 |              |  |  |  |  |  |  |
|                                   | , L. Nashelsky, "Electronic Devices and Circuit Theo                                                                                                                                        | -                                                                                                |                 |              |  |  |  |  |  |  |
| · · · · · ·                       | C. Halkias, Satyabrata Jit, "Electronic Devices and                                                                                                                                         |                                                                                                  |                 |              |  |  |  |  |  |  |
|                                   | n, S.K. Banerjee, "Solid State Electronic Devices",                                                                                                                                         |                                                                                                  |                 |              |  |  |  |  |  |  |
| •                                 | lectronic Fundamentals and Applications", Prentice                                                                                                                                          |                                                                                                  |                 |              |  |  |  |  |  |  |
| -                                 | Kumar, "Hand Book of Electronics", Pragati Praka                                                                                                                                            |                                                                                                  |                 |              |  |  |  |  |  |  |
|                                   | Aalvino, Goutam Saha, "Digital Principles and App                                                                                                                                           |                                                                                                  |                 |              |  |  |  |  |  |  |
|                                   |                                                                                                                                                                                             | o Theory and Practice", Prentice-Hall of India Private Limited, 1982, 2e                         |                 |              |  |  |  |  |  |  |
| ~                                 | dern Digital Electronics", McGraw Hill, 2009, 4e                                                                                                                                            |                                                                                                  |                 |              |  |  |  |  |  |  |
| e-Learning So                     |                                                                                                                                                                                             |                                                                                                  |                 |              |  |  |  |  |  |  |
|                                   | t Amrita Vishwa Vidyapeetham, <u>https://vlab.amrita</u>                                                                                                                                    |                                                                                                  |                 |              |  |  |  |  |  |  |
|                                   | t Amrita Vishwa Vidyapeetham, <u>https://vlab.amrita.</u>                                                                                                                                   |                                                                                                  |                 |              |  |  |  |  |  |  |
| <ol><li>Digital Platfor</li></ol> | ms /Web Links of other virtual labs may be sugges                                                                                                                                           | ieu / audeu to this lists by individual Universities.                                            |                 |              |  |  |  |  |  |  |

|              |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |      |      |      |      |  |  |  |  |
|--------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|--|--|--|--|
| PO-PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PSO1 | PSO2 | PSO3 | PSO4 |  |  |  |  |
| CO1          | 2   |                                                                |     |     |     |     | 3   | 3    |      |      | 3    |  |  |  |  |
| CO2          | 2   |                                                                |     |     |     |     | 3   | 3    |      |      | 3    |  |  |  |  |
| CO3          | 3   |                                                                |     |     |     |     | 2   | 3    |      |      | 3    |  |  |  |  |
| CO4          | 2   |                                                                |     |     |     |     | 3   | 3    |      |      | 3    |  |  |  |  |
| CO5          | 3   |                                                                |     |     |     |     | 2   | 3    |      | 2    | 3    |  |  |  |  |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Introduction to<br>Computer         Introduction to<br>Computer         Introduction to<br>Computer         Introduction to<br>Pigital computer and its peripherals, number systems (Binary, Octal,<br>Readecimal Systems). Flow chart for simple statistical problems.         7           2         Introduction to<br>R Programming         Introduction to<br>R Programming and R Studio, Installing R, R as a calculator.<br>Creating a data set, Understanding a data set, Data structure: Vectors, Matrices,<br>Arrays, Data Frames, Factors and Lists         8           3         Introduction to<br>SPSS         Data inputs: Entering data from the keyboard, Importing Data from Excel,<br>SPSS, SAS, STATA, creating new variables, recoding variable, renaming<br>variables,         8           4         Graphs and<br>Inferential<br>Statistics with R         Graphs using R, Inferential Statistics- Parametric test: Test for Normality, t-test<br>for single mean, t-test for difference between means, paired t-test.         7           5         Non-parametric<br>test with R         SPSS Environment, entering data, Importing and Exporting data, Data<br>Regression: Simple and Multiple regression         8           6         Descriptive<br>Statistics with<br>SPSS         Using SPSS; Inferential Statistics- Parametric test: Test for Normality, t-<br>test for single mean, t-test for difference between means, paired t-test.         8           7         Inferential<br>Statistics with<br>SPSS         Using SPSS; Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression         7           8         Non-p                                                                                                                                                                                                                                                                                                                                                                                                    | Tff. off-                                                                                                |              |            | 4.05       | Integr            | al Univer                             | sity, Luckno        | JW                 |                 |                                       |            |                       | _   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------|------------|------------|-------------------|---------------------------------------|---------------------|--------------------|-----------------|---------------------------------------|------------|-----------------------|-----|--|
| Course Outer         Display Course         Statistical Software '         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L <thl< th="">         L<!--</td--><td></td><td></td><td>sion: 202</td><td></td><td></td><td>Title of the</td><td>Statistical Corr</td><td>nuting and</td><td>Introduction</td><td>to</td><td></td><td></td><td></td></thl<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                          |              | sion: 202  |            |                   | Title of the                          | Statistical Corr    | nuting and         | Introduction    | to                                    |            |                       |     |  |
| YearTHIRDSensetrSIXTH40Pre-Requisite10+2 with<br>MathematicsCo.<br>requisiteTo introduce the basic concept of computer and data analysis using statistical software.<br>COUE Basic Knowledge of Computer and its number system.EC01Basic Knowledge of Computer and its number system.Basic Knowledge of SPSS.Control and analysis for both univariate and multivariate data sets using SPSS.<br>Ability to perform data analysis for both univariate and multivariate data sets using SPSS.Contact of UaitC03Basic Knowledge of SPSS.Content of UaitContent of UaitContent of UaitNo.Thirdouction to<br>ComputerIntroduction to Computer: Contention of Computer, Sance Structure of Computer,<br>Hexalectinal Systems). Flow chart for simple statistical problems.<br>Introduction to to Regramming and R Studio, Installing R, R as a calculator.<br>Creating a data set, Understanding a data set, Data structure: Vectors, Matrices,<br>Arrays, Data Iranes, Factors and Lats.83Introduction to<br>SPSS SAS, STATA, creating new variables, recoding variable, renaming<br>variables,74Graphs and<br>Inferential<br>Statistics with RGraphs using R. Inferential Statistics- Parametric test: Test for Normality, 1-test<br>Regression Simple and Multiple regression85Non-parametric<br>test, Markysio O Variance, Karl Pearson correlation coefficient, Linear<br>Regression Simple and Multiple regression46Statistics with<br>SPSSSpSS Non-parametric test, Analysis of Variance, Correlation and Proparametric<br>test, Analysis of Variance, Press, Inc.87Non-parametric<br>Inforential<br>Statistics with SPSS<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Course                                                                                                   | Code         |            | B060       | 0601T/MT330       |                                       |                     |                    | miloduction     | L                                     | Т          | Р                     | 0   |  |
| Pre-Requisite         10+2 with<br>Mathematics         Course<br>requisite         Course Outcomes           Course Objectives         To introduce the basic concept of computer and data analysis using statistical software.<br>Course Outcomes         Course Outcomes           CO1         Basic Knowledge of Computer and its number system.         Example of Computer and its number system.           CO2         Basic Knowledge of SPSS.         Course Outcomes           CO3         Basic Knowledge of SPSS.         Course Outcomes           CO4         Ability to perform data analysis for both univariate and multivariate data sets using R.           CO4         Ability to perform data analysis for both univariate and multivariate data sets using R.           CO5         Ability to perform data analysis.         For both univariate and multivariate data sets using R.           1         Introduction to<br>Computer         Introduction to Computer and its peripherals, number systems.         Re a calculator.           2         Introduction to R Programming and R Sudio, Instahling R, R as a calculator.         Restart and a set. Jander analysis for both univariates and multivariate and multivariate.         Restart analysis for single mean. t-test for difference between means. paired t-test.         Restart analysis for single mean. t-test for difference between means. paired t-test.           2         Non-parametric test with R         Sess S. Non-parametric test. Staft secon correlation coefficient. Linear Regression : Simple and Multip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Year                                                                                                     |              |            | THI        | RD                | Semester                              |                     | ii ui o            |                 | 4                                     | 0          | 0                     | 4   |  |
| Markematics         requisite         Image: comparison of the state state of the                                                                                         |                                                                                                          |              |            |            |                   |                                       |                     |                    |                 |                                       |            | -                     | +   |  |
| Course Objectives         To introduce the basic concept of computer and data analysis using statistical software.<br>Course Outcomes           Course Objectives           Basic Knowledge of R programming.         Course Objectives           CO3         Basic Knowledge of R programming.         Course Objectives           CO3         Basic Knowledge of R programming.         Course of R programming.           CO4         Ability to perform data analysis for both univariate and multivariate data sets using R.         Contata analysis for both univariate and multivariate data sets using R.           Contata analysis for both univariate and multivariate data sets using Network to Computer. Basic Structure of Computer.         Contata analysis for both univariate and multivariate data sets using SPSS.           Unit         Introduction to Computer: Generation of Computer. Basic Structure of Computer.         Contata sets using SPSS.           Introduction to Computer: data set, Understanding a data set, Data structure: Vectors, Matrices, SPSS.         SPSS           SPSS         SPSS         SPSS         SPSS           SPSS         SPSS         SPS         SPS           SPSS         SPSS         SPS         SPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pre-Rea                                                                                                  | quisite      |            |            |                   |                                       |                     |                    |                 |                                       |            |                       |     |  |
| Course Outcomes           Ability to perform data analysis for both univariate and multivariate data sets using R           Course Outcomes           Introduction to Computer: Generation of Computer, Basic Structure of Computer, Outputer           Introduction to Computer and its peripherals, number systems (Binary, Octal, Hexadecimal Systems), Flow chart for simple statistical problems.           Introduction to Computer and Systems, Flow chart for simple statistical problems.           Introduction to Computer and Systems, Flow chart for simple statistical problems.           Introduction to Data inputs: Entering data from the keyboard, Importing Data from Excel, SPSS Systems and From the Reyboard, Importing Data from Excel, SPSS Systems and From Systems, Flow and Systems, Flow and From Systems, Flow and Systems, Flow and System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Course                                                                                                   | Objectives   | ;          |            |                   | sic concept of                        | of computer and of  | data analys        | is using statis | tical softv                           | vare.      |                       |     |  |
| CO2         Basic Knowledge of R programming.           CO3         Basic Knowledge of SPSS.           CO3         Ability to perform data analysis for both univariate and multivariate data sets using SPS.           CO3         Ability to perform data analysis for both univariate and multivariate data sets using SPS.           Content Na.         Introduction to Computer: Generation of Computer, Basic Structure of Computer, Digital computer and its peripherals, number systems (Binary, Octal, Hexadecimal Systems), Flore Matrix Structure: Vectors, Matrices, Arrays, Data Frances, Factors and Lists         8           2         Introduction to R Programming and R Studio, Installing R, Ra a calculator.         8           3         Introduction to SSTS, STATA, creating new variables, recoding variable, renaming variables, arrays, Data Frances, Factors and Lists         7           4         Graphs and Graphs using R, Inferential Statistics- Parametric test: Test for Normality, t-test for single mean, t-test for difference between means, paired t-test.         7           5         Non-parametric test, Single mean, t-test for difference between means, paired t-test.         8           6         SprSs         SprSs         SprSs           7         East Analysis of Variance, Karl Pearson correlation coefficient, Linear Regression : Simple and Multiple regression         8           6         Statistics with R         Graphs and Graph using SPSS. Inferential Statistics- Parametric test: Test for Normality, t-test for single mean,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |              |            | •          |                   | Cou                                   | irse Outcomes       | ý                  | C               |                                       |            |                       |     |  |
| Cost         Basic Knowledge of SPSS.           Cost         Ability to perform data analysis for both univariate and multivariate data sets using R.           Cost         Ability to perform data analysis for both univariate and multivariate data sets using SPSS.           Unit         Title of the Unit         Content of Unit         Content of Unit           1         Introduction to<br>Computer         Introduction to Computer and its peripherals, number systems (Binary, Octal, Texadecimal Systems). Flow chart for simple statistical problems.         R as a calculator.           2         Introduction to<br>R Programming         Introduction to R Programming and R Studio, Installing R. R as a calculator.         8           3         Introduction to<br>SPSS         SPSS. SAS, STATA, creating new variables, recoding variable, renaming variables, respective test, with R         7           5         Non-parametric test, Signe mean, t-test for difference between means, paired t-test.         7           6         Statistics with R         Graphs using SPSS. Inferential Statistics. Parametric test: Test for Normality, t-test for single mean, t-test for difference between means, paired t-test.         8           7         Graphs and Inferential Statistics. Parametric test: Test for Normality, t-test for single mean, t-test for difference between means, paired t-test.         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |              |            |            |                   |                                       | tem.                |                    |                 |                                       |            |                       |     |  |
| Code Ability to perform data analysis for both univariate and multivariate data sets using S.           Code Ability to perform data analysis for both univariate and multivariate data sets using SPSS.           Unit<br>No.         Title of the Unit         Content of Unit         Content of Unit         Content of Computer, Basic Structure of Computer, Digital computer and its peripherals, number systems (Binary, Octal, Hexadecinal Systems), Flow chart for simple statistical problems.           1         Introduction to<br>Computer         Introduction to R Programming and R Studio, Installing R, Ra as calculator, Creating a data set, Undata set, Data structure: Vectors, Matrices, Arrays, Data Frames, Factors and Lists           3         Introduction to<br>SPSS         Creating a data set, Undata from the keyboard, Importing Data from Excel, SPSS. SAS, STATA, creating new variables, recoding variable, renaming variables, recoding variable, renaming variables, is single and Multiple regression         7           5         Non-parametric test, the single and Multiple regression         Using R: Wilcoxon signed rank sum test, Mann Whitney U test, Kruskal Wallis SPSS         8           6         Spress         Spress         Spress         Spress         8           7         Spress         Spress         Spress         Spress         8           8         Non-parametric test with R         Graphs using SPSS, Inferential Statistics- Parametric test. Statistics, Kuskal Wallis SPSS         8 <td></td> <td></td> <td></td> <td></td> <td></td> <td>ing.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |              |            |            |                   | ing.                                  |                     |                    |                 |                                       |            |                       |     |  |
| Cos Ability to perform data analysis for both univariate and multivariate data sets using SPSS.         Unit<br>No.       Title of the Unit       Content of Unit <t< td=""><td></td><td>Basic H</td><td>Knowle</td><td>dge of</td><td>SPSS.</td><td>wheth main</td><td></td><td>maniata da</td><td>40.0040.000</td><td>D</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                          | Basic H      | Knowle     | dge of     | SPSS.             | wheth main                            |                     | maniata da         | 40.0040.000     | D                                     |            |                       |     |  |
| Unit<br>No.         Title of the Unit         Content of Unit         Content<br>Hrs           1         Introduction to<br>Computer         Introduction to Computer, and its peripherals, number systems (Binry, Octal,<br>Hexadecinal Systems). Flow chart for simple statistical problems.         7           2         Introduction to<br>R Programming         Introduction to Reversion adta set, Data structure: Vectors, Matrices,<br>Arrays, Data Frames, Factors and Lists         8           3         Introduction to<br>SPSS         Data inputs: Entering data from the keyboard, Importing Data from Excel,<br>SPSS, SAS, STATA, creating new variables, recoding variable, renaming<br>variables,<br>recoding variable, statistics- Parametric test: Test for Normality, t-test<br>for single mean, t-test for difference between means, paired t-test.         7           5         Non-parametric<br>test with R         Using R: Wilcoxon signed rank sum test, Mann Whitney U test, Kruskal Wallis<br>7         8           6         Descriptive<br>SPSS         SPSS Environment, entering data, Importing and Exporting data, Data<br>Regression: Simple and Multiple regression         8           7         Graphs and<br>Inferential<br>Statistics with<br>SPSS         Graphs using SPSS, Inferential Statistics- Parametric test: Test for Normality, t-<br>test for single mean, t-test for difference between means, paired t-test.         8           7         Graphs and<br>Inferential<br>Statistics with<br>SPSS         Graphs using SPSS, Inferential Statistics- Parametric test: Test for Normality, t-<br>test for single mean, t-test for difference between means, paired t-test.         8                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          | Ability      | to peri    | orm d      | ata analysis ic   | or both univ                          | ariate and multi    | variate da         | ta sets using   | K.                                    |            |                       |     |  |
| No.         Interduction to<br>Computer         Introduction to<br>R Programming         Introduction to R Programming and R Studio, Installing R, R as a calculator.<br>Creating a data set, Understanding a data set, Data structure: Vectors, Matrices,<br>Arrays, Data Franes, Factors and Lists         8           3         Introduction to<br>SPSS         Data inputs: Entering data from the keyboard, Importing Data from Excel,<br>SPSS. SAS, STATA, creating new variables, recoding variable, renaming<br>variables, recoding variable, renaming         8           4         Graphs and<br>Inferential<br>Statistics with R         Graphs using R, Inferential Statistics- Parametric test: Test for Normality, t-test<br>for single mean, t-test for difference between means, paired t-test.         7           5         Non-parametric<br>Using R: Wilcoxon signed rank sum test, Mann Whitney Utest, Kruskal Wallis<br>SPSS         8         8           6         Descriptive<br>SPSS Environment, entering data, Importing and Exporting data, Data<br>Brophy and<br>SPSS         8         8           7         Graphs and<br>Inferential<br>Statistics with<br>SPSS         Graphs using SPSS, Inferential Statistics-Parametric test: Test for Normality, t-<br>test with SPSS         8           8         Non-parametric<br>test with SPSS         Using SPSS: Non-parametric test; Analysis of Variance (One-way & Two way<br>Anova), Kan Pearson Correlation coeffic                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |              |            |            | ata allalysis it  |                                       |                     |                    | ta sets using   | ,5155.                                | Contact    | Man                   | ner |  |
| 1       Introduction to<br>Computer       Digital computer and its peripherals, number systems (Binary, Octal,<br>Hexadecimal Systems), Flow chart for simple statistical problems.         2       Introduction to<br>R Programming       Introduction to R Programming and R Studio, Installing R, R as a calculator.<br>Creating a data set, Understanding a data set, Data structure: Vectors, Matrices,<br>Arrays, Data Frames, Factors and Lists       8         3       Introduction to<br>SPSS       Data inputs: Entering data from the keyboard, Importing Data from Excel,<br>SPSS, SAS, STATA, creating new variables, recoding variable, renaming<br>variables,       8         6       Graphs and<br>Inferential<br>Statistics with R       Graphs using R, Inferential Statistics- Parametric test: Test for Normality, t-test<br>for single mean, t-test for difference between means, paired t-test.       7         5       Non-parametric<br>test with R       SPSS invironment, entering data, Importing and Exporting data, Data<br>Preparation, Data Transformation. Descriptive Statistics, Explore, Graphs using<br>SPSS       8         6       Statistics with<br>Statistics with<br>Statistics with<br>Statistics with<br>Statistics with<br>Statistics with<br>SPSS       Using SPSS, Inferential Statistics-Parametric test: Test for Normality, t-<br>test for single mean, t-test for difference between means, paired t-test.       8         8       Non-parametric<br>base with SPSS       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression       7         8       Non-parametric<br>bast with SPSS       U                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          | Title        | of the Uni | it         |                   |                                       | Content of Uni      | it                 |                 |                                       | Hrs.       | C                     |     |  |
| Computer       Digital computer and its perpherais, number systems (Binary, Octal, Hexadecimal Systems), Plow Charl for simple statistical problems.         2       Introduction to R Programming and R Studio, Installing R, R as a calculator. Creating a data set, Understanding a data set, Data structure: Vectors, Matrices, Arrays, Data Franes, Factors and Lists       8         3       Introduction to SPSS       Data inputs: Entering data from the keyboard, Importing Data from Excel, SPSS, SAS, STATA, creating new variables, recoding variable, renaming variables, arrays, Data Franes, Factors and Lists       7         4       Graphs and Inferential Statistics- Parametric test: Test for Normality, t-test for single mean, t-test for difference between means, paired t-test. Statistics with R       7         5       Non-parametric test with R       Using R: Wilcoxon signed rank sum test, Mann Whitney U test, Kruskal Wallis test, Analysis of Variance, Karl Pearson correlation coefficient, Linear Regression : Simple and Multiple regression       8         6       Descriptive SPSS Environment, entering data, Importing and Exporting data, Data Transformation. Descriptive Statistics, Explore, Graphs using SPSS       7         7       Inferential Statistics with SPSS Non-parametric test; Analysis of Variance (One-way & Two way Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and Multiple regression       7         8       Non-parametric test for SPSS: Non-parametric test; Analysis of Variance (One-way & Two way Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and Multiple regression       7                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                          | Intro duo    | tion to    |            |                   |                                       |                     |                    |                 |                                       |            |                       |     |  |
| 2       Introduction to R Programming and R Studio, Installing R, R as a calculator. Creating a data set, Understanding a data set, Data structure: Vectors, Matrices, Arrays, Data Frames, Factors and Lists       8         3       Introduction to Determining and R Studio, Installing R, R as a calculator. Creating a data set, Understanding a data set, Data structure: Vectors, Matrices, Arrays, Data Frames, Factors and Lists       8         3       Introduction to SPSS       Data imputs: Entering data from the keyboard, Importing Data from Excel, SPSS, SAS, STATA, creating new variables, recoding variable, renaming variables,       8         4       Graphs and Information of Roman, Informatia Statistics- Parametric test: Test for Normality, t-test for single mean, t-test for difference between means, paired t-test.       7         5       Non-parametric test with R       Using R: Wilcoxon signed rank sum test, Mann Whitney U test, Kruskal Wallis Preparation, Data Transformation. Descriptive Statistics, Explore, Graphs using SPSS       8         6       Statistics with SPSS       SrSS       SrSS       8         7       Graphs and Inferential Statistics- Parametric test: Test for Normality, t-test for single mean, t-test for difference between means, paired t-test.       8         8       Non-parametric test with SPSS       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and Multiple regression       7         8       Non-parametric tests, Analysis: Programming with R, Springer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                        |              |            |            |                   |                                       |                     |                    |                 | Octal,                                |            | CO1                   |     |  |
| 2       Introduction to<br>R Programming       Creating a data set, Understanding a data set, Data structure: Vectors, Matrices,<br>Arrays, Data Frames, Factors and Lists         3       Introduction to<br>SPSS       Creating a data set, Understanding a data set, Data structure: Vectors, Matrices,<br>SPSS, SAS, STATA, creating new variables, recoding variable, renaming<br>variables,       8         4       Graphs and<br>Inferential<br>Statistics with R       Graphs using R, Inferential Statistics- Parametric test: Test for Normality, t-test<br>for single mean, t-test for difference between means, paired t-test.       7         5       Non-parametric<br>test with R       Using R: Wilcoxon signed rank sum test, Mann Whitney U test, Kruskal Wallis<br>for single mean, t-test for difference between correlation coefficient, Linear<br>Regression : Simple and Multiple regression       7         6       Statistics with<br>Sysss       SPSS Environment, entering data, Importing and Exporting data, Data<br>Regression : Simple and Multiple regression       8         7       Graphs and<br>Inferential<br>Statistics with<br>SPSS       Graphs using SPSS, Inferential Statistics- Parametric test: Test for Normality, t-<br>test for single mean, t-test for difference between means, paired t-test.       8         8       Non-parametric<br>test with SPSS       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression       7         8       Non-parametric<br>test with SPSS       Software for Data Analysis: Programming with R, Springer.       2       Crawley,                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                          | comput       | 01         |            |                   |                                       |                     |                    |                 |                                       |            |                       |     |  |
| 2       R Programming       Creating a data set, Understanding a data set, Data structure: Vectors, Matrices, Arrays, Data Frames, Factors and Lists         3       Introduction to SPSS       SPSS STATA, creating new variables, recoding variable, renaming variables, recoding variable, renaming variables,       8         4       Graphs and Inferential Statistics- Parametric test: Test for Normality, t-test for single mean, t-test for difference between means, paired t-test.       7         5       Non-parametric test mits and Using R: Wilcoxon signed rank sum test, Mann Whitney U test, Kruskal Wallis test, Analysis of Variance, Karl Pearson correlation coefficient, Linear Regression.       8         6       Statistics with R       SPSS Environment, entering data, Importing and Exporting data, Data Preparation, Data Transformation. Descriptive Statistics, Explore, Graphs using SPSS Environment, entering data, Importing and Exporting data, Data Represented t-test.       8         7       Statistics with SPSS       SPSS Environment, entering data, Importing and Exporting data, Data Represented test, SPSS environment, entering data, Importing and Exporting data, Preparation, Data Transformation coefficient, Linear Regression : Simple and Multiple regression       8         7       Statistics with SPSS       SPSS Environment, entering data, Importing and Exporting data, Preparation, Data Transformation coefficient, Linear Regression : Simple and Multiple regression       7         8       Non-parametric tests for single mean, t-test for difference between means, paired t-test.       7         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          | Introduc     | tion to    |            |                   |                                       |                     |                    |                 |                                       | 8          | CO2                   |     |  |
| Arrays, Data Frames, Pactors and Lass         Jurroduction to<br>SPSS       Data inputs: Entering data from the keyboard, Importing Data from Excel,<br>SPSS, SAS, STATA, creating new variables, recoding variable, renaming<br>variables,       8         Graphs and<br>Inferential<br>Statistics with R       Graphs using R, Inferential Statistics- Parametric test: Test for Normality, t-test<br>for single mean, t-test for difference between means, paired t-test.       7         S       Non-parametric<br>test with R       Using R: Wilcoxon signed rank sum test, Mann Whitney U test, Kruskal Wallis<br>Statistics with R       7         6       Descriptive<br>Statistics with R       SPSS       Environment, entering data, Importing and Exporting data, Data<br>Preparation, Data Transformation. Descriptive Statistics, Explore, Graphs using<br>SPSS       8         7       Graphs and<br>Inferential<br>Statistics with<br>SPSS       Caraphs using SPSS, Inferential Statistics- Parametric test: Test for Normality, t-<br>test for single mean, t-test for difference between means, paired t-test.       8         8       Non-parametric<br>test with SPSS       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression       7         8       Chambers, J. (2008). Software for Data Analysis: Programming with R, Springer.       2       7         2.       Crawley, M.J. (2017). The R Book, John Wiley & Sons.       3       Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programmingand Applications, Prep<br>Hall.                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 <b>R</b> Programming Creating a data set, Understanding a data set, Data structure: Vectors, Matrices, |              |            |            |                   |                                       |                     |                    |                 |                                       |            |                       |     |  |
| 3       Introduction to SPSS       SPSS. SAS, STATA, creating new variables, recoding variable, renaming variables, recoding variable, renaming variables, service variables, variables, variables, variables, variables, variables, variables, variables, variables, recoding variable, renaming variables, recoding variable, renaming variables, recoding variable, renaming variables, recoding variable, renaming variables, variables, variables, variables, recoding variable, renaming variables, recoding variable, renaming variables, varing variables, variables, variables, varing variables, varing varia                                                                                                 |                                                                                                          |              | 0          |            |                   |                                       |                     | 1 <b>x</b> :       | D C             | <b>D</b> 1                            |            |                       |     |  |
| 5       SPSS       SPSS <t< td=""><td>2</td><td></td><td>tion to</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8</td><td>000</td><td>,</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                        |              | tion to    |            |                   |                                       |                     |                    |                 |                                       | 8          | 000                   | ,   |  |
| Graphs and<br>Inferential<br>Statistics with R       Graphs using R, Inferential Statistics- Parametric test: Test for Normality, t-test<br>for single mean, t-test for difference between means, paired t-test.       7         5       Non-parametric<br>test with R       Using R: Wilcoxon signed rank sum test, Mann Whitney U test, Kruskal Wallis<br>test, Analysis of Variance, Karl Pearson correlation coefficient, Linear<br>Regression : Simple and Multiple regression       7         6       Descriptive<br>SpSS       SPSS Environment, entering data, Importing and Exporting data, Data<br>SPSS       8         7       Graphs and<br>Inferential<br>Statistics with<br>SPSS       Graphs using SPSS, Inferential Statistics- Parametric test: Test for Normality, t-<br>test for single mean, t-test for difference between means, paired t-test.       8         8       Non-parametric<br>test with SPSS       Using SPSS: Non-parametric test: Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression       7         8       Non-parametric<br>test with SPSS       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression       7         8       Non-parametric<br>test with SPSS       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression       7         8       Non-parametric<br>test with SPSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                        |              |            |            |                   | IAIA, creati                          | ng new variables    | s, recoding        | variable, ren   | naming                                |            | CO3                   | ,   |  |
| 4       Inferential<br>Statistics with R       for single mean, t-test for difference between means, paired t-test.         5       Non-parametric<br>test with R       Using R: Wilcoxon signed rank sum test, Mann Whitney U test, Kruskal Wallis<br>test, Analysis of Variance, Karl Pearson correlation coefficient, Linear<br>Regression : Simple and Multiple regression       7         6       Descriptive<br>SPSS       SPSS Environment, entering data, Importing and Exporting data, Data<br>SPSS       8         7       Graphs and<br>Inferential<br>Statistics with<br>SPSS       Graphs using SPSS, Inferential Statistics- Parametric test: Test for Normality, t-<br>test for single mean, t-test for difference between means, paired t-test.       8         8       Non-parametric<br>test with SPSS       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression       7         8       Non-parametric<br>test with SPS       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression       7         8       Non-parametric<br>test with SPS       Using SPS: Programming with R, Springer.       2         2.       Crawley, M.J. (2008). Software for Data Analysis: Programming with R, Springer.       2       7         3.       Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programmingand Applications, Pren<br>Hall.       5         Suggestive digital p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          | Graphs       | and        |            |                   | Information                           | Statistics Daman -+ | rio tost. Te-      | t for Normalia  | u t toot                              | 7          |                       |     |  |
| Statistics with R         Ion single mean, recursion difference between means, pared ress.           5         Non-parametric<br>test with R         Using R: Wilcoxon signed rank sum test, Mann Whitney U test, Kruskal Wallis<br>rest, Analysis of Variance, Karl Pearson correlation coefficient, Linear<br>Regression : Simple and Multiple regression         7           6         Statistics with<br>SPSS         SPSS Environment, entering data, Importing and Exporting data, Data<br>SPSS         8           7         Graphs and<br>Inferential<br>Statistics with<br>SPSS         Graphs using SPSS, Inferential Statistics- Parametric test: Test for Normality, t-<br>test for single mean, t-test for difference between means, paired t-test.         8           8         Non-parametric<br>test with SPSS         Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression         7           8         Non-parametric<br>test with SPSS         Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression         7           1.         Chambers, J. (2008). Software for Data Analysis: Programming with R, Springer.         2           2.         Crawley, M.J. (2017). The R Book, John Wiley & Sons.         3         5           3.         Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Pret<br>Hall.         5           Statioff, N. (2011). Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                        |              |            |            |                   |                                       |                     |                    |                 | y, i-test                             |            | CO4                   | Ļ   |  |
| Non-parametric<br>test with R         Using R: Wilcoxon signed rank sum test, Mann Whitney U test, Kruskal Wallis<br>test, Analysis of Variance, Karl Pearson correlation coefficient, Linear<br>Regression : Simple and Multiple regression         7           6         Descriptive<br>Statistics with<br>SPSS         SPSS Environment, entering data, Importing and Exporting data, Data<br>Preparation, Data Transformation. Descriptive Statistics, Explore, Graphs using<br>SPSS         8           7         Graphs and<br>Inferential<br>Statistics with<br>SPSS         Graphs using SPSS, Inferential Statistics- Parametric test: Test for Normality, t-<br>test for single mean, t-test for difference between means, paired t-test.         8           8         Non-parametric<br>test with SPSS         Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression         7           8         Non-parametric<br>test with SPSS         Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression         7           8         Non-parametric<br>test with SPSS         Using SPS: Non-parametric tests, Analysis of Variance, One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression         7           8         Neway, M.J. (2017). The R Book, John Wiley & Sons.         3         2         7           3         Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications,                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          |              |            |            | ior single mear   | , i-iest 101 ull                      |                     | icans, paneo       | 1-1051.         |                                       |            |                       |     |  |
| Solution       test with R       test, Analysis of Variance, Karl Pearson Correlation Coefficient, Linear Regression : Simple and Multiple regression :       Solution Coefficient, Linear Regression :         6       Descriptive Statistics with SPSS       SPSS Environment, entering data, Importing and Exporting data, Data Preparation, Data Transformation. Descriptive Statistics, Explore, Graphs using SPSS       8         7       Graphs and Inferential Statistics with SPSS       Graphs using SPSS, Inferential Statistics- Parametric test: Test for Normality, test for single mean, t-test for difference between means, paired t-test.       8         8       Non-parametric test with SPSS       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and Multiple regression       7         8       Non-parametric test with SPSS       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and Multiple regression       7         8       Non-parametric test with SPSS       Using SPS: Non-parametric tests, Analysis of Variance (One-way & Two way Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and Multiple regression       7         8       Non-parametric test with SPSS       Using SPS: Non-parametric tests, Analysis of Variance (One-way & Two way Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and Multiple regression         8       Non-parametric       Set Analysis of Variance (One-way & Two                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          | Non non      | omotrio    |            | Using R: Wilco    | oxon signed ra                        | ank sum test, Man   | n Whitney U        | J test, Kruskal | Wallis                                | 7          |                       |     |  |
| Regression : Simple and Multiple regression       Regression         6       Statistics with<br>SPSS       SPSS Environment, entering data, Importing and Exporting data, Data<br>Preparation, Data Transformation. Descriptive Statistics, Explore, Graphs using<br>SPSS       8         7       Graphs and<br>Inferential<br>Statistics with<br>SPSS       Graphs using SPSS, Inferential Statistics- Parametric test: Test for Normality, t-<br>test for single mean, t-test for difference between means, paired t-test.       8         8       Non-parametric<br>test with SPSS       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression       7         8       Non-parametric<br>test with SPSS       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression       7         2.       Crawley, M.J. (2017). The R Book, John Wiley & Sons.       3       2         3.       Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Pren<br>Hall.       5         5.       Matloff, N. (2011). The Art of R Programming, No Starch Press, Inc.       6         6.       Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Pren<br>Hall.         Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS       1         https://youtu.be/N-DO8iDHL U?si=1JEk1k127GrlafH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                        |              |            |            |                   |                                       |                     | correlation        | coefficient,    | Linear                                |            | CO4                   | ł   |  |
| 5       Statistics with<br>SPSS       Preparation, Data Transformation. Descriptive Statistics, Explore, Graphs using<br>SPSS         7       Graphs and<br>Inferential<br>Statistics with<br>SPSS       Graphs using SPSS, Inferential Statistics- Parametric test: Test for Normality, t-<br>test for single mean, t-test for difference between means, paired t-test.       8         8       Non-parametric<br>test with SPSS       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression       7         8       Chambers, J. (2008). Software for Data Analysis: Programming with R, Springer.       7         2.       Crawley, M.J. (2017). The R Book, John Wiley & Sons.       7         3.       Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Pren<br>4.       Margan G A: SPSS for Introductory Statistics; Uses and Interpretation.       7         5.       Matloff, N. (2011). The Art of R Programming, No Starch Press, Inc.       6       Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Pren<br>Hall.         Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS       7         https://voutu.be/N-DOSiDHI U?si=1JEk1k127GtlafH2       3       2       3       2       3       3       2         CO1       3       2       2       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          | test with    |            |            |                   |                                       |                     |                    |                 |                                       |            |                       |     |  |
| SPSS       SPSS         7       Graphs and<br>Inferential<br>Statistics with<br>SPSS       Graphs using SPSS, Inferential Statistics- Parametric test: Test for Normality, t-<br>test for single mean, t-test for difference between means, paired t-test.       8         8       Non-parametric<br>test with SPSS       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression       7         Reference Books:       .       .       .         1.       Chambers, J. (2008). Software for Data Analysis: Programming with R, Springer.       .       .         2.       Crawley, M.J. (2017). The R Book, John Wiley & Sons.       .       .       .         3.       Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Prent       .         4.       Margan G A: SPSS for Introductory Statistics; Uses and Interpretation.       .       .         5.       Matloff, N. (2011). The Art of R Programming, No Starch Press, Inc.       .       .         6.       Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, PrentHall.         Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS       .         https://youtu.be/N-DO8iDIH       PO3       PO4       PO5       PO6       PO7       PS01       PS02       PS03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                          |              |            |            |                   |                                       |                     |                    |                 |                                       | 8          |                       |     |  |
| Graphs and<br>Inferential<br>Statistics with<br>SPSS       Graphs using SPSS, Inferential Statistics- Parametric test: Test for Normality, t-<br>test for single mean, t-test for difference between means, paired t-test.       8         8       Non-parametric<br>test with SPSS       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression       7         Reference Books:       1.       Chambers, J. (2008). Software for Data Analysis: Programming with R, Springer.       7         2.       Crawley, M.J. (2017). The R Book, John Wiley & Sons.       3.       Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Prent<br>4.       Margan G A: SPSS for Introductory Statistics; Uses and Interpretation.         5.       Matloff, N. (2011). The Art of R Programming, No Starch Press, Inc.       6.       Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Prent<br>Hall.         Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS       8         https://youtu.be/N-DQ8iDIH       12/si = JEk1k127GtlafH2         CO1       3       2       2       3       2       3       2       3       2       2       3       2       2       3       2       2       3       2       2       3       3       3       3       3       3       3       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                        |              | s with     |            |                   | ata Transform                         | ation. Descriptive  | Statistics, 1      | Explore, Grapl  | hs using                              |            | CO5                   | )   |  |
| 7       Inferential<br>Statistics with<br>SPSS       rest for single mean, t-test for difference between means, paired t-test.       7         8       Non-parametric<br>test with SPSS       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression       7         Reference Books:       .       .       .       .         1.       Chambers, J. (2008). Software for Data Analysis: Programming with R, Springer.       .       .         2.       Crawley, M.J. (2017). The R Book, John Wiley & Sons.       .       .       .         3.       Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Prent       .         4.       Margan G A: SPSS for Introductory Statistics; Uses and Interpretation.       .       .         5.       Matloff, N. (2011). The Art of R Programming, No Starch Press, Inc.       .       .         6.       Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, PrentHall.         Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS       .         https://youtu.be/N-DO8iDHL U2si=IJEk1k127GtlafH2       .       .       .       .         CO2       3       2       2       .       .       .       .       . <td< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td><b>T</b></td><td></td><td>0</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                          |              | 1          |            |                   |                                       |                     |                    | <b>T</b>        |                                       | 0          |                       |     |  |
| 7       Statistics with<br>SPSS       Itex for single mean, restrict tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression       7         8       Non-parametric<br>test with SPSS       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way<br>Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression       7         Reference Books:       1       Chambers, J. (2008). Software for Data Analysis: Programming with R, Springer.       7         2.       Crawley, M.J. (2017). The R Book, John Wiley & Sons.       3       5         3.       Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Prent<br>4.       Margan G A: SPSS for Introductory Statistics; Uses and Interpretation.         5.       Matloff, N. (2011). The Art of R Programming, No Starch Press, Inc.       6       Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Prent<br>Hall.         Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS       Nttps://voutu.be/N-DO8iDH       U?si=IJEk1k127GtlafH2         Course Articulation Matrix: (Mapping of COs with POs and PSOs)         PO-PSO<br>CO       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PSO1       PSO2       PSO3       PSO         CO1       3       2       2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ality, t-</td><td>8</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |              |            |            |                   |                                       |                     |                    |                 | ality, t-                             | 8          |                       |     |  |
| SPSS       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and Multiple regression       7         Reference Books:       Using SPSS: Non-parametric tests, Analysis of Variance (One-way & Two way Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and Multiple regression       7         Reference Books:       Image: Crawley, M.J. (2008). Software for Data Analysis: Programming with R, Springer.       7         2.       Crawley, M.J. (2017). The R Book, John Wiley & Sons.       3.       Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Prent         4.       Margan G A: SPSS for Introductory Statistics; Uses and Interpretation.       5.         5.       Matloff, N. (2011). The Art of R Programming, No Starch Press, Inc.       6.         6.       Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, PrentHall.         Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS       Nhttps://youtu.be/N-DOSiDIH U?si=IJEk1k127GtlafH2         Course Articulation Matrix: (Mapping of COs with POs and PSOs)         PO-PSO       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PSO1       PSO2       PSO3       PSO         CO1       3       2       2       3       3       3       3 <td>7</td> <td></td> <td></td> <td></td> <td>test for single f</td> <td>nean, t-test foi</td> <td>allerence betwee</td> <td>en means, pa</td> <td>ured t-test.</td> <td></td> <td></td> <td>CO5</td> <td>)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                        |              |            |            | test for single f | nean, t-test foi                      | allerence betwee    | en means, pa       | ured t-test.    |                                       |            | CO5                   | )   |  |
| 8       Non-parametric<br>test with SPSS       Anova), Karl Pearson correlation coefficient, Linear Regression : Simple and<br>Multiple regression         Reference Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |              |            |            |                   |                                       |                     |                    |                 |                                       |            |                       |     |  |
| o       test with SPSs       Anova), Kar Pearson correlation contration contribution contribution.         Reference Books:       Interview contribution contribution contribution contribution contribution contribution.       Interview contributicontribution contrelation contribution. <td></td> <td>Non par</td> <td>ametric</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td></td> <td></td> |                                                                                                          | Non par      | ametric    |            |                   |                                       |                     |                    |                 |                                       | 7          |                       |     |  |
| Multiple regression         Multiple regression           Reference Books:         Multiple regression           1. Chambers, J. (2008). Software for Data Analysis: Programming with R, Springer.         2.           2. Crawley, M.J. (2017). The R Book, John Wiley & Sons.         3.           3. Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Pren           4. Margan G A: SPSS for Introductory Statistics; Uses and Interpretation.           5. Matloff, N. (2011). The Art of R Programming, No Starch Press, Inc.           6. Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Pren           Hall.           Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS           https://voutu.be/N-DQ8iDIH_U?si=1JEk1k127GtlafH2           Course Articulation Matrix: (Mapping of COs with POs and PSOs)           PO-PSO         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PSO1         PSO2         PSO3         PSO           CO1         3         2         2         3         3         3         2         2           2         2         3         3         3         3         3         2         2           Suggestive digital platforms web link/platform:         PDFE/SWAYA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                        | test with    | SPSS       |            | , .               |                                       | lation coefficient, | Linear Reg         | ression : Simp  | ple and                               |            | CO5                   | í.  |  |
| 1. Chambers, J. (2008). Software for Data Analysis: Programming with R, Springer.         2. Crawley, M.J. (2017). The R Book, John Wiley & Sons.         3. Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Pren         4. Margan G A: SPSS for Introductory Statistics; Uses and Interpretation.         5. Matloff, N. (2011). The Art of R Programming, No Starch Press, Inc.         6. Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Pren         Hall.         Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS         https://voutu.be/N-DQ8iDIH_U?si=1JEk1k127GtlafH2         Course Articulation Matrix: (Mapping of COs with POs and PSOs)         PO-PSO       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PSO1       PSO2       PSO3       PSO         CO1       3       2       2       3       3       3       2       2         CO2       3       2       2       3       3       3       2       2         CO3       3       2       2       3       3       3       3       3       3         Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS       Not Second PSO       Second Second PSO       Second Second Second Second Seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                          |              |            |            | Multiple regres   | sion                                  |                     |                    |                 |                                       |            | I                     |     |  |
| 2. Crawley, M.J. (2017). The R Book, John Wiley & Sons.         3. Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programmingand Applications, Pren         4. Margan G A: SPSS for Introductory Statistics; Uses and Interpretation.         5. Matloff, N. (2011). The Art of R Programming, No Starch Press, Inc.         6. Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programmingand Applications, Pren         Hall.         Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS         https://voutu.be/N-DQ8iDIH_U?si=IJEk1k127GtlafH2         Course Articulation Matrix: (Mapping of COs with POs and PSOs)         PO-PSO       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PSO1       PSO2       PSO3       PSO         CO1       3       2       2       3       3       3       2       2         CO2       3       2       2       3       3       3       2       2         CO3       3       2       2       3       3       3       3       3       3       2         CO4       3       2       2       3       3       3       3       3       3       3       3       3       3       3       3       3 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |              |            |            |                   |                                       |                     |                    |                 |                                       |            |                       |     |  |
| 3. Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programmingand Applications, Pren         4. Margan G A: SPSS for Introductory Statistics; Uses and Interpretation.         5. Matloff, N. (2011). The Art of R Programming, No Starch Press, Inc.         6. Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programmingand Applications, Pren<br>Hall.         Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS         https://voutu.be/N-DQ8iDIH U?si=1JEk1k127GtlafH2         Course Articulation Matrix: (Mapping of COs with POs and PSOs)         PO-PSO<br>CO1         901       PO2       PO3       PO4       PO5       PO6       PO7       PSO1       PSO2       PSO3       PSO<br>CO1       3       2       3       2       3       2       3       2       3       2       3       2       3       2       3       2       3       2       3       2       3       2       3       2       3       2       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.                                                                                                       | Chambe       | rs, J. (20 | 08). So    | ftware for Data A | Analysis: Prog                        | ramming with R, S   | Springer.          |                 |                                       |            |                       |     |  |
| 4. Margan G A: SPSS for Introductory Statistics; Uses and Interpretation.         5. Matloff, N. (2011). The Art of R Programming, No Starch Press, Inc.         6. Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Pret Hall.         Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS         https://youtu.be/N-DO8iDIH U?si=IJEk1k127GtlafH2         Course Articulation Matrix: (Mapping of COs with POs and PSOs)         PO-PSO         COU PO3 PO4 PO5 PO6 PO7 PSO1 PSO2 PSO3 PSO         CO1 3 2         2 3         CO3 3 2         2 3         CO3 3 2         2 3         CO4 3 2         3 2         CO4 3 2         3 2         CO5 3 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.                                                                                                       | Crawley      | , M.J. (2  | 017). T    | he R Book, Johr   | Wiley & Son                           | IS.                 |                    |                 |                                       |            |                       |     |  |
| 4. Margan G A: SPSS for Introductory Statistics; Uses and Interpretation.         5. Matloff, N. (2011). The Art of R Programming, No Starch Press, Inc.         6. Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Pret Hall.         Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS         https://youtu.be/N-DO8iDIH U?si=LJEk1k127GtlafH2         Course Articulation Matrix: (Mapping of COs with POs and PSOs)         PO-PSO         COU         701       PO2       PO3       PO4       PO5       PO6       PO7       PS01       PS02       PS03       PS0         CO1       3       2       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       3       3       3 <t< td=""><td>3.</td><td>Eckhous</td><td>e. R.H. a</td><td>and Mor</td><td>rris, L.R. (1975)</td><td>Minicompute</td><td>er Systems Organiz</td><td>ation. Progr</td><td>ammingand A</td><td>pplications</td><td>Prenti</td><td>ce-Ha</td><td>11.</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.                                                                                                       | Eckhous      | e. R.H. a  | and Mor    | rris, L.R. (1975) | Minicompute                           | er Systems Organiz  | ation. Progr       | ammingand A     | pplications                           | Prenti     | ce-Ha                 | 11. |  |
| 5. Matloff, N. (2011). The Art of R Programming, No Starch Press, Inc.         6. Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programmingand Applications, Pren Hall.         Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS         https://voutu.be/N-DQ8iDIH_U?si=1JEk1k127GtlafH2         Course Articulation Matrix: (Mapping of COs with POs and PSOs)         PO-PSO       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PSO1       PSO2       PSO3       PSO2         CO1       3       2       2       3       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       3       3       3       3       3       3       2       2       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.                                                                                                       |              | · ·        |            |                   | *                                     |                     | <u>auton, 1105</u> | uninguna rij    | ppiloution                            | , 1 101111 | <i>ce</i> 11 <i>a</i> |     |  |
| 6. Eckhouse, R.H. and Morris, L.R. (1975). Minicomputer Systems Organization, Programming and Applications, Pren Hall.         Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS         https://youtu.be/N-DQ8iDIH_U?si=1JEk1k127GtlafH2         Course Articulation Matrix: (Mapping of COs with POs and PSOs)         PO-PSO       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PS01       PS02       PS03       PS02         CO1       3       2       2       3       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       3       3       3       3       2       2       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.                                                                                                       | Margan       | G A: SP    | SS for I   | Introductory Stat | istics; Uses an                       | d Interpretation.   |                    |                 |                                       |            |                       |     |  |
| Hall.         Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS         https://youtu.be/N-DQ8iDIH_U?si=1JEk1k127GtlafH2         Course Articulation Matrix: (Mapping of COs with POs and PSOs)         PO-PSO       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PS01       PS02       PS03       PS02         CO1       3       2       2       3       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       3       3       2       2       3       3       3       3       2       2       3       3       3       3       2       2       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.                                                                                                       | Matloff,     | N. (201    | 1). The    | Art of R Program  | nming, No Sta                         | arch Press, Inc.    |                    |                 |                                       |            |                       |     |  |
| Hall.         Suggestive digital platforms web link/platform: NPTEL/SWAYAM/MOOCS         https://youtu.be/N-DQ8iDIH_U?si=1JEk1k127GtlafH2         Course Articulation Matrix: (Mapping of COs with POs and PSOs)         PO-PSO       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PS01       PS02       PS03       PS02         CO1       3       2       2       3       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       2       2       3       3       3       2       2       3       3       3       3       2       2       3       3       3       3       2       2       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.                                                                                                       | Eckhous      | e. R.H. a  | and Mo     | rris, L.R. (1975) | Minicompute                           | er Systems Organiz  | zation. Prog       | rammingand A    | pplication                            | s. Prenti  | ce-                   |     |  |
| https://youtu.be/N-DQ8iDIH_U?si=1JEk1k127GtlafH2           Course Articulation Matrix: (Mapping of COs with POs and PSOs)           PO-PSO         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PSO1         PSO2         PSO3         PSO2           CO1         3         2         2         3         3         2         3         2         3         2         3         2         2         3         3         2         2         3         2         2         3         3         3         2         2         3         2         2         3         3         3         2         2         3         3         3         3         2         2         3         3         3         3         2         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                          |              | -,         |            |                   | · · · · · · · · · · · · · · · · · · · |                     | 8-                 | 8               | · · · · · · · · · · · · · · · · · · · | ~ <b>,</b> |                       |     |  |
| Course Articulation Matrix: (Mapping of COs with POs and PSOs)           PO-PSO         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PS01         PS02         PS03         PS02           CO1         3         2         2         3          3         2         3         2         2         3         2         2         3         2         2         3         2         2         3         2         2         3         2         2         3         2         2         3         2         2         3         2         2         3         2         2         3         2         2         3         3         3         3         2         2         3         3         3         3         2         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 <th< td=""><td>Suggest</td><td>tive digital</td><td>platform</td><td>s web li</td><td>nk/platform: NP</td><td>FEL/SWAYAN</td><td>/MOOCS</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Suggest                                                                                                  | tive digital | platform   | s web li   | nk/platform: NP   | FEL/SWAYAN                            | /MOOCS              |                    |                 |                                       |            |                       |     |  |
| PO-PSO<br>CO         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PS01         PS02         PS03         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |              |            |            |                   |                                       |                     |                    |                 |                                       | _          |                       |     |  |
| PO-PSO<br>CO         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PS01         PS02         PS03         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |              |            |            | Correct 4         | lation M. t. t                        | Manning 600         |                    | <b>D</b> SO     |                                       |            |                       |     |  |
| CO         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PS01         PS02         PS03         PS03 <td>PO-PS/</td> <td>0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PO-PS/                                                                                                   | 0            |            |            |                   |                                       |                     |                    |                 |                                       |            |                       |     |  |
| CO1       3       2       2       3       3       2       3       2         CO2       3       2       2       3       3       3       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       3       3       3       2       2       2       3       3       3       3       2       2       3       3       3       3       3       3       2       2       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3 </td <td></td> <td>PO1</td> <td>PO2</td> <td>PO3</td> <td>PO4</td> <td>PO5 PO6</td> <td>PO7</td> <td>PSO1</td> <td>PSO2</td> <td>PSO3</td> <td>PSO4</td> <td>P</td> <td>so</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          | PO1          | PO2        | PO3        | PO4               | PO5 PO6                               | PO7                 | PSO1               | PSO2            | PSO3                                  | PSO4       | P                     | so  |  |
| CO2       3       2       2       3       3       2       2         CO3       3       2       2       3       3       3       2       2         CO3       3       2       2       3       3       3       3       2       2         CO4       3       2       2       3       3       2       2       3         CO5       3       2       2       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          | 3            | 2          |            | 2                 | 3                                     |                     | 3                  | 2               | 3                                     | 2          |                       | 3   |  |
| CO4         3         2         2         3         3         2         2         3           CO5         3         2         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td>3</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          | 3            |            |            |                   |                                       |                     |                    |                 |                                       | 2          |                       | 3   |  |
| CO5         3         2         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                          |              |            |            |                   |                                       |                     |                    |                 |                                       | 2          |                       | 2   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |              |            |            |                   |                                       |                     |                    |                 |                                       | 3          |                       | 3   |  |
| 1- Low Correlation; 2- Moderate Correlation; 5- Substantial Correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C05                                                                                                      | 3            | 2          | 1          | =                 | -                                     | Completion 2 G-1    | -                  | _               | 3                                     | 3          |                       | 2   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |              |            | 1          | - Low Correlation | i; 2- wioderate                       | Correlation; 3- Su  | ustantial Cor      | relation        |                                       |            |                       |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |              |            |            |                   |                                       |                     |                    |                 |                                       |            |                       |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |              | NL 2       | <b>d</b> • | <b>D</b>          |                                       |                     |                    | a. a.a          |                                       |            |                       |     |  |
| Name & Sign of Program Coordinator     Sign & Seal of HoD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          |              | iname &    | SIGII OL   | i rografii Coordi | latui                                 |                     |                    | sigli & Seal    |                                       |            |                       |     |  |



| Effective                                                                                    | e from Ses                                                                                                                                              | sion: 202  | 24-25         |                            | <u> </u>      |              | • /        |             |                    |                |           |                      |                |            |        |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|----------------------------|---------------|--------------|------------|-------------|--------------------|----------------|-----------|----------------------|----------------|------------|--------|
| Course                                                                                       | Code                                                                                                                                                    |            | B0606         | 502T/MT331                 | Title<br>Cour | of the<br>se | Operati    | ons Resea   | arch               |                |           | L                    | Т              | Р          | С      |
| Year                                                                                         |                                                                                                                                                         |            | THIR          |                            | Seme          | ester        | SIXTH      |             |                    |                |           | 4                    | 0              | 0          | 4      |
| Pre-Req                                                                                      | uisite                                                                                                                                                  |            | 10+2<br>Mathe |                            | Co-<br>requi  | isite        |            |             |                    |                |           |                      |                |            |        |
| -                                                                                            |                                                                                                                                                         |            | Under         | rstand the c               | lefinitions   | s and F      | Formulat   | ion of lir  | near program       | mming prob     | lem and   | diffe                | erent          |            |        |
| Course                                                                                       | Objectives                                                                                                                                              |            |               |                            |               |              |            | lly comp    | oletion of co      | ourse, the stu | ident w   | ill ab               | le exp         | olore      |        |
|                                                                                              |                                                                                                                                                         |            | subjec        | et into their              | respectiv     |              |            |             |                    |                |           |                      |                |            |        |
| CO1                                                                                          | Anidaa                                                                                                                                                  | alaanta    | the histo     | ni ool hooleo              |               |              | rse Outco  |             | ~ ~ ~ ~ <b>1</b> - |                |           |                      |                |            |        |
| CO1                                                                                          |                                                                                                                                                         |            |               | rical backg                |               |              |            |             |                    | escription of  | the real  |                      |                |            |        |
| 02                                                                                           | •                                                                                                                                                       |            | •             |                            |               |              |            |             |                    | ramming pr     |           | -                    |                |            |        |
| CO3                                                                                          | •                                                                                                                                                       |            |               | ansportation               |               |              |            |             | incar prog         | ranning pr     | obieni.   |                      |                |            |        |
| CO4                                                                                          |                                                                                                                                                         |            | <u> </u>      | lacement p                 |               | <u> </u>     |            |             |                    |                |           |                      |                |            |        |
| CO5                                                                                          |                                                                                                                                                         |            |               | blems base                 |               |              |            | 5.          |                    |                |           |                      |                |            |        |
| Unit<br>No.                                                                                  | Title of                                                                                                                                                | the Uni    | t             |                            |               |              | Conter     | nt of Unit  |                    |                |           |                      | ontact<br>Hrs. | Mapp<br>CO |        |
| 1                                                                                            | Introduc<br>of OR                                                                                                                                       | ction      |               | istory & ba<br>eir formula |               |              |            |             |                    | ning proble    | ms and    |                      | 7              | CO1        |        |
| 2                                                                                            | Solution                                                                                                                                                |            | So            | olving LPP                 | by, Sim       | plex r       | nethod,    |             |                    | wophase Me     | ethod,    |                      | 8              | CO2        |        |
| 2                                                                                            | LPPDegeneracy and Duality in LTT.3TransportatioTransportatioTransportation problem: North-west corner rule, Least cost method,8                         |            |               |                            |               |              |            |             |                    |                |           |                      |                |            |        |
| 3                                                                                            | n Problems         Vogel's approximation method. Optimum solution: Stepping stone method.         COS           Assignment         Assignment         7 |            |               |                            |               |              |            |             |                    |                |           |                      |                |            |        |
| 4Assignment<br>ProblemsAssignment Problem: Hungarian Method, TravellingSalesman Problem,7CO3 |                                                                                                                                                         |            |               |                            |               |              |            |             |                    |                |           |                      |                |            |        |
| 5                                                                                            | Replacement<br>ProblemsReplacement<br>replacement.Individual<br>andGroup                                                                                |            |               |                            |               |              |            |             |                    |                |           |                      | 7              | CO4        |        |
| 6                                                                                            | Sequent<br>Problem                                                                                                                                      | cing<br>1s |               | b sequenci<br>achines.     | ing: n joł    | os – 2       | machin     | es, n joł   | -3  mac            | hines, 2 jobs  | s – n     |                      | 8              | CO4        |        |
|                                                                                              | _                                                                                                                                                       |            |               |                            |               |              |            |             |                    | Characteris    |           |                      | 8              |            |        |
| 7                                                                                            | Game<br>Theory                                                                                                                                          |            |               |                            |               |              |            |             |                    | Zero-Sum       |           |                      |                | CO5        |        |
|                                                                                              | Theory                                                                                                                                                  |            |               | ethod, Don                 | -             | · ·          |            | n to rect   | angular ga         | me using gr    | apnicai   |                      |                |            |        |
|                                                                                              | Properti                                                                                                                                                | ies of     |               |                            |               |              |            | e proper    | tv to reduc        | e the game     | matrix    |                      | 7              | ~~~        |        |
| 8                                                                                            | game th                                                                                                                                                 |            |               |                            |               |              |            |             | strategy, Ll       |                |           |                      |                | CO5        |        |
| Referen                                                                                      | ce Books:                                                                                                                                               |            |               |                            |               |              |            |             |                    |                |           |                      |                |            |        |
| 1.                                                                                           | Swarup,                                                                                                                                                 | K., Gu     | ıpta P.K.     | and ManM                   | Iohan (20     | 07). Oj      | perations  | Research    | n, Sultan Ch       | and & Sons.    |           |                      |                |            |        |
| 2.                                                                                           | Taha, H.                                                                                                                                                | A. (200    | 7). Opera     | tions Resea                | rch: An Int   | troducti     | ion, Prent | tice Hall o | of India.Had       | ley, G: (2002  | ) : Linea | r                    |                |            |        |
|                                                                                              |                                                                                                                                                         |            |               | blications                 |               |              |            |             |                    | •              |           |                      |                |            |        |
| 3.                                                                                           | -                                                                                                                                                       | •          |               |                            | $I_{(2010)}$  | Introd       | uction to  | Operati     | one Resear         | ch- Concepts   | and case  | as Of                | h Edi          | tion 7     | Fata   |
| J.<br>McGrav                                                                                 |                                                                                                                                                         | л, г.л     | and Lie       | Jerman, O.                 | ). (2010).    | muou         | uction it  | o operati   | ons Researc        | II- Concepts   | and case  | <i>cs</i> , <i>H</i> | ii Lui         | uon, i     | i ata  |
| 4.                                                                                           |                                                                                                                                                         | G: (200    | 2): Linear    | Programmi                  | ing, Naros    | a Publi      | cations    |             |                    |                |           |                      |                |            |        |
| 5.                                                                                           |                                                                                                                                                         |            | <b>_</b>      |                            |               | <b>-</b>     |            |             | inciples and       | Practice, Joh  | n Wiley   | & So                 | ns.            |            |        |
|                                                                                              |                                                                                                                                                         |            |               | k/platform:                |               |              | I/MOOCS    | 5           |                    |                |           |                      |                |            |        |
| <u>intps.</u>                                                                                | //www.y                                                                                                                                                 | outube.    | <u>com/wa</u> | tch?v=bQ5<br>Course Art    |               |              | (Manning   | of COs v    | vith POs and       | PSOs)          |           |                      |                |            |        |
| PO-PSC                                                                                       | ) PO1                                                                                                                                                   | PO2        | PO3           | PO4                        | PO5           | PO6          |            | PO7         | PSO1               | PSO2           | PSO3      |                      | PSO4           | PS         | 504    |
| CO<br>CO1                                                                                    | 3                                                                                                                                                       | 2          |               | 2                          | 3             |              |            |             | 3                  | 2              | 3         |                      | 2              |            | 3      |
| CO1                                                                                          | 3                                                                                                                                                       | 1          |               | 2                          | 3             |              |            |             | 3                  | 3              | 2         |                      | 2              |            | 3      |
| CO3                                                                                          | 3                                                                                                                                                       | 2          |               | 2                          | 3             |              |            |             | 3                  | 3              | 3         |                      | 2              |            | 2      |
| CO4<br>CO5                                                                                   | 3                                                                                                                                                       | 22         |               | 2 2                        | 3             |              |            |             | 3                  | 2 3            | 2         | +                    | 3              |            | 3<br>2 |
| 05                                                                                           | 3                                                                                                                                                       | 2          | 1-            | —                          | -             | oderate      | Correlati  | on; 3- Sul  | ostantial Cor      |                | 3         |                      | 3              | <u> </u>   | 2      |
|                                                                                              |                                                                                                                                                         |            |               |                            |               |              |            |             |                    |                |           |                      |                |            |        |
|                                                                                              |                                                                                                                                                         |            |               |                            |               |              |            |             |                    |                |           |                      |                |            |        |
| 1                                                                                            | 1                                                                                                                                                       | Name &     | Sign of P     | rogram Coo                 | rdinator      |              |            | 1           |                    | Sign & Seal    | of HoD    |                      |                |            |        |



| Effective from Session: 2024 | Effective from Session: 2024-25 |                        |                                                 |   |   |   |   |  |  |  |  |  |  |
|------------------------------|---------------------------------|------------------------|-------------------------------------------------|---|---|---|---|--|--|--|--|--|--|
| Course Code                  | B060603P/MT332                  | Title of the<br>Course | Operations Research & Statistical Computing Lab | L | Т | Р | С |  |  |  |  |  |  |
| Year                         | Third                           | Semester               | Sixth                                           | 0 | 0 | 4 | 2 |  |  |  |  |  |  |
| Pre-Requisite                | 10+2 with<br>Mathematics        | Co-requisite           |                                                 |   |   |   |   |  |  |  |  |  |  |
| Course Objectives            |                                 |                        |                                                 |   |   |   |   |  |  |  |  |  |  |

|     | Course Outcomes                                                                   |  |  |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CO1 | Knowledge of mathematical formulation of L.P.P                                    |  |  |  |  |  |  |  |  |
| CO2 | Ability of solving LPP using different methods.                                   |  |  |  |  |  |  |  |  |
| CO3 | Ability to solve Allocation Problem based on Transportation and Assignment model. |  |  |  |  |  |  |  |  |
| CO4 | Ability to solve problems based on Game Theory.                                   |  |  |  |  |  |  |  |  |
| CO5 | Ability to use programming language R and SPSS                                    |  |  |  |  |  |  |  |  |

| Experiment<br>No.       | Title of the<br>Experiment    | Content of Experiment                                                                                                                                            | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |
|-------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|
| 1                       |                               | Problem based on Mathematical formulation of L.P.P                                                                                                               | 2               | 1            |  |  |  |  |
| 2                       |                               | Problem based on solving LPP using GraphicalMethod                                                                                                               | 2               | 2            |  |  |  |  |
| 3                       |                               | Problem based on solving LPP using Simplex Method                                                                                                                |                 |              |  |  |  |  |
| 4                       |                               | 4                                                                                                                                                                | 2               |              |  |  |  |  |
| 5                       |                               | involving artificial variables.<br>Allocation Problem based on Transportation model.                                                                             | 2               | 3            |  |  |  |  |
| 6                       |                               | 2                                                                                                                                                                | 3               |              |  |  |  |  |
| 7                       |                               | 2                                                                                                                                                                | 4               |              |  |  |  |  |
| 8                       |                               | 2                                                                                                                                                                | 4               |              |  |  |  |  |
| 9                       |                               | Problem based on solving Mixed strategy game.                                                                                                                    |                 |              |  |  |  |  |
| 10                      |                               | Problem based on solving game using LPP method.                                                                                                                  |                 |              |  |  |  |  |
| 11                      |                               | Problem based on application of R as Calculator.                                                                                                                 |                 |              |  |  |  |  |
| 12                      |                               | Problem based on application of R in simple dataanalysis                                                                                                         |                 |              |  |  |  |  |
| 13                      |                               | Problem based on application of SPSS in data analysis                                                                                                            | 2               | 5            |  |  |  |  |
| Margan G                | ., Gupta P.K<br>A: SPSS for I | A. and ManMohan (2007). Operations Research, SultanChand & So<br>Introductory Statistics; Uses and Interpretation.<br>rt of R Programming, No Starch Press, Inc. | ns.             |              |  |  |  |  |
| e-Learning Suggestive d |                               | web link/platform: NPTEL/SWAYAM/MOOCS                                                                                                                            |                 |              |  |  |  |  |

|                  | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |      |      |      |      |      |
|------------------|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| CO1              | 3                                                              |     |     |     |     |     | 3   | 3    | 3    | 3    | 3    | 3    |
| CO2              | 3                                                              |     |     |     |     |     | 2   | 3    | 2    | 3    | 3    | 2    |
| CO3              | 3                                                              |     |     |     |     |     | 3   | 3    | 2    | 2    | 2    | 1    |
| CO4              | 3                                                              |     |     |     |     |     | 2   | 3    | 2    | 2    | 3    | 2    |
| CO5              | 3                                                              |     |     |     |     |     | 2   | 3    | 3    | 3    | 3    | 3    |

Sign & Seal of HoD