

Integral University, Lucknow **Department of Mathematics & Statistics** Study and Evaluation Scheme (w.e.f. 2020-21)

	M. Sc. (Mathematics) II nd year / III rd Semester																				
				Per	Period hr/week/ser	n		Ev	aluation Sc	heme			Tota			Att	ributes				nited Nation Sustainable
S. No.	Course code	Course Title	Type of Paper	L	т	Ρ	ст	ТА	Total	ESE	Sub. Total	Credit	I Cred its	Employa bility	Entrepre neurship	Skill Develop ment	Gender Equality	Environ ment & Sustain ability	Hum an Valu e	Profes sional Ethics	Goals (SDG s
THEO	THEORIES																				
1	MT504	Differential Geometry-II	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					
2	MT505	Applied Functional Analysis	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					
3	MT506	Integral Equations	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					3 CEIMAIE
4	MT507	Optimization Techniques	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					12 RESPONSIBLE CONSUMPTION AND PRODUCTION
5	MT508	Fluid Dynamics	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					13 glimate
6	MT509	Special Function and Orthogonal Polynomials	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V					9 ADDRESS AND
			Total	18	06	00	240	120	360	240	600	24	24								

CT = Class Test; TA = Teacher's Assessment,; ESE = End Semester Examination; Sessional = CT + TA; Subject Total = Sessional + ESE

Effective from Session: 2015 - 16											
Course Code	MT504	Title of the Course	Differential Geometry II	L	Т	Р	С				
Year	II	Semester	III	3	1	0	4				
Dro Doquisito	B. Sc. with	Co roquisito									
r re-kequisite	Mathematics	Co-requisite									
	1. This is an introductory course on Differentiable manifolds. The aim of this course is to introduce and develop basic										
	theoretical concepts of almost contact manifolds and almost complex manifolds for n-dimensional spaces.										
Course Objectives	2. This course	e is aimed to provide	an understanding of the affine connections, curvature te	nsors,	linear	connex	ion,				
	Nijenhuis tensor, contravariant & covariant almost analytic vectors.										
	3. This course is aimed to provide the concept of semi-invariant and CR-sub manifolds of differentiable manifolds.										

	Course Outcomes
CO1	Understand the concept of various kinds of almost contact manifolds with examples.
CO2	Able to define almost complex manifolds and calculate the curvature tensors, Nijenhuis tensor, contravariant &
	covariant almost analytic vectors.
CO3	Make logical arguments on Kahler & nearly Kahler manifolds and CR-submanifolds of Kahlerian manifolds.
CO4	Characterize Almost contact manifold to Sasakian manifold, quasi Sasakian manifold, k-contact Riemannian
	manifolds and find semi-invariant submanifolds of Sasakian manifolds.
CO5	Develop the understanding of the basic concepts of Almost Hermite manifolds, submanifolds of almost
	Hermite manifold, almost Grayan submanifold, F-structure manifolds.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Tensor Analysis	Almost contact manifold, affinely almost co-symplectic manifold, contact metric structures, para-contact structures.	8	CO1						
2	Space curves	Almost complex manifold, Nijenhuis tensor, contravariant & covariant almost analytic vector, F-connection, linear connexion.	8	CO2						
3	3 Surface Theory Kahler & nearly Kahler manifolds, affine connections, curvature tensors, CR-submanifolds of Kahlerian manifolds.									
4	Fundamental Equations	Sasakian manifold, quasi Sasakian manifold, k-contact Riemannian manifold, semi-invariant submanifolds of Sasakian manifold.	8	CO4						
5	8	CO5								
Refere	nce Books:									
1. Davi	id E. Blair, Contact mani	folds in Riemannian Geometry, Springer-Verlag. Structures of manifolds,								
2. K. Y	ano & M. Kon, Structure	es of manifolds World Scientific Publishing Co. Pvt. Ltd.								
3. S.I. 1	Hussain. Lecture notes or	n differentiable manifolds								
4. B.Y.	Chen, Geometry of Sub	manifolds, Marcel Dekker, New York.								
e-Lea	arning Source:									
1. https://www.youtube.com/watch?v=klks723on3k										
2. <u>https</u>	://www.youtube.com/wa	tch?v=klks723on3k								
3. https	://www.youtube.com/wa	tch?v=KwHfz5BegoU								

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PS O	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4			
CO															
CO 1	3	1	1	1	2	1	1	3							
CO 2	3	1	2	1	3	1	2	3							
CO 3	3	1	2	1	3	1	1	2							
CO 4	3	1	1	1	2	1	2	3							
CO 5	3	1	1	1	2	1	1	2							

Effective from Session: 2019 - 20											
Course Code	MT505	Title of the Course	Applied Functional Analysis	L	Т	Р	С				
Year	II	Semester	III	3	1	0	4				
Pro Poquisito	B. Sc. with	Co requisito									
1 1e-Requisite	Mathematics	Co-requisite									
	The course gives an introduction to Applied functional analysis, which is a branch of analysis in which one develops										
Course Objectives	analysis in infin	ite dimensional vector	spaces. The central concepts which are studied are normed	spaces	with emphasis on						
Course Objectives	Banach and Hil	bert spaces, and contin	nuous linear maps (often called operators) between such sp	paces.	After s	uccessfi	ully				
	completion of c	ourse, the student will	able to explore subject into their respective dimensions.								

	Course Outcomes
CO1	Define and describe Metric spaces, examples of metric spaces, interior point, limit point, open set, closed set, neighborhood, convergence,
	Cauchy sequence, continuity, complete metric spaces, compact metric spaces.
CO2	Define and describe Normed linear Space, Banach spaces, incomplete normed spaces, finite dimensional normed spaces and subspaces,
	equivalent norms, compactness, Riesz's lemma, linear operators, bounded and continuous linear operators, continuity of linear operators,
	linear functional, linear operators and functional on finite dimensional spaces.
CO3	Define and describe Inner product spaces, Hilbert spaces, properties of Inner product spaces, polarization identity, orthogonal complements
	and direct sums, orthogonal sets and sequences, series related to orthogonal sequences and sets, representation of functional on Hilbert space.
CO4	Describe Zorn's lemma, Hahn-Banach theorem, Hahn Banach theorem for complex vector spaces and normed spaces, Application to bounded
	linear functionals on C[a,b], uniform boundedness theorem, Open mappings, open mapping theorem, Closed linear operators, closed graph
	theorem.
CO5	Define and describe Contraction mappings, Picard's iterates, Banach fixed point theorem, Application of Banach theorem to linear equations,
	Application of Banach theorem to differential equations.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO		
1	Metric Spaces	Metric spaces, examples of metric spaces, interior point, limit point, open set, closed set, neighborhood, convergence, Cauchy sequence, continuity, complete metric spaces, compact metric spaces.	7	CO1		
2	Normed Spaces & Banach spaces	Normed linear Space, Banach spaces, incomplete normed spaces, finite dimensional normed spaces and subspaces, equivalent norms, compactness, Riesz's lemma, linear operators, bounded and continuous linear operators, continuity of linear operators, linear functional, linear operators and functional on finite dimensional spaces.	8	CO2		
3	3 Inner Product spaces & Hilbert Spaces Inner product spaces, Hilbert spaces, properties of Inner product spaces, polarization identity, orthogonal complements and direct sums, orthogonal sets and sequences, series related to orthogonal sequences and sets, representation of functional on Hilbert space.					
4	4 Fundamental Theorems of Normed and Banach					
5	Banach fixed point theorem	8	CO5			
Refere	nce Books:					
1. Intro	oductory Functional Anal	ysis with Applications by Erwin Kreyszig(1989).				
2. Intro Dell	oduction to Functional Anni(2015).	nalysis with Applications by A.H. Siddiqui, Khalil Ahmad and P. Manchanda, Real World Educa	tion Publish	ers, New		
3. Ар	olied Functional Analysis	by A.H. Siddiqui, Real World Education Publishers, New Delhi (2015).				
4. Elen	nents of the Theory of Fu	nctions and Functional Analysis by W. Rudin.				
e-Lea	arning Source:					
1. <u>http</u>	s://nptel.ac.in/courses/112	1105037/				
2. <u>http</u>	s://www.youtube.com/wa	tch?v=7IIw_U8rv4Q				
3. http:	s://freevideolectures.com	/course/3145/functional-analysis				

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PS O CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4			
CO 1	3	1	1	1	2	2	2	3	3	3	2	3			
CO 2	3	1	1	1	2	1	2	3	3	3	2	3			
CO 3	2	1	1	1	2	1	2	3	3	3	3	3			
CO 4	3	1	2	1	1	1	2	3	3	2	2	3			
CO 5	3	1	1	1	2	1	2	3	3	3	2	3			

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator Sign & Seal of HoD

Effective from Session: 20	Effective from Session: 2015 - 16										
Course Code	MT506	Title of the Course	Integral Equations	L	Т	Р	С				
Year II Semester III					1	0	4				
Pre-Requisite	B. Sc. with	Co-requisite									
TTe Requisite	Mathematics	eo requisite									
Course Objectives	The course is aimed to develop the skills in mathematics for grooming them into successful science										
Course Objectives	graduate. The top	oics introduced will ser	ve as basic tools for specialized studies in science field.								

	Course Outcomes									
CO1	Familiar with the concepts of integral operator and functional.									
CO2	Recognize difference between Volterra and Fredholm Integral Equations, First kind and Second kind, homogeneous and inhomogeneous etc.									
CO3	Acquired sound knowledge of Green's functions, Fredholm and Volterra integral equations and of the calculus of variations.									
CO4	Ordinary and partial differential equations using Green's functions.									
CO5	They apply different methods to solve Integral Equations.									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO	
1	Fredholm and Volterra integral equation	Regularity conditions, special kinds of kernels, Eigen values and Eigen functions, Convolution integral, reduction to a system of algebraic equations, Fredholm alternative, an approximate method, examples, iterative scheme, Volterra integral equation, Some results about the resolvent Kernel, Examples.	9	CO1	
2	Classical Fredholm Theory	The method of solution of Fredholm, Fredholm first theory, Examples.	7	CO2	
3	Applications to ordinary differential equations Initial value problems, boundary value problems, Dirac delta Function, Green's Function approach, Green's function for nth orderordinary differential equations, Modified Green's function, Examples.				
4	Symmetric Kernels	Introduction, Fundamental properties of Eigen values and Eigen functions for symmetric Kernels, Expansion in Eigen functions and Bilinear forms, Hilbert-Schmidt theorem and some immediate consequences, solutions of a symmetric integral equation, Examples	8	CO4	
5	Singular Integral Abel's Equations, Inversion formula for singular integral equations, Laplace transform, Equations and Application to Volterra integral and integral differential equations with convolution type Integral Transform Kernels, Abel's Integral equations, Fourier Transform, methods Method.				
Refere	nce Books:				
1. 1.	Numerical Methods for	Scientific and Engineering computation by M.K.			
2. Ja	in, S.R.K. Iyengar, R.K.	Jain, New Age Int. Ltd., New Delhi.			
3. N	umerical Methods by P. I	Kandasamy, S. Chand Publ. New Delhi.			
4. In	troduction to Numerical	Analysis, by S.S. Sastry Prentice Hall Flied			
e-Lea	arning Source:				
1. <u>ht</u>	tps://nptel.ac.in/content/s	torage2/nptel_data3/html/mhrd/ict/text/115104096/lec47.pdf			
2. <u>ht</u>	tps://nptel.ac.in/content/s	torage2/nptel_data3/html/mhrd/ict/text/111107103/lec13.pdf			
2 1					

3. http://hitoshi.berkeley.edu/221A/delta.pdf

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO- PS O	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO 1	3	2	2	1	1	3	1	1	1	2	1	1
CO 2	2	2	2	1	1	2	2	1	1	2	1	2
CO 3	2	2	2	1	1	2	3	3	1	3	1	2
CO 4	3	2	3	1	1	3	2	3	3	1	3	3
CO 5	3	2	1	1	1	2	1	1	3	1	3	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2015 - 16										
Course Code	MT507	Title of the Course	Optimization Techniques	L	Т	Р	С			
Year	II	Semester	III	3	1	0	4			
Dro Doquisito	B. Sc. with	Co mognicito								
Pre-Requisite	Mathematics	Co-requisite								
Course Objectives	Understand the	Understand the definitions and Formulation of linear programming problem and different optimizationtechniques								

	Course Outcomes							
CO1	To understand the definitions and Formulation of linear programming problem (LPP) Graphical method, Simplex method, Big-M method, Two							
	Phase method, Primal & Dual problem.							
CO2	Able to explain the Various method of finding initial basic feasible solution of transportation problem, Optimality criterion in transportation							
	problem. Solution of assignment problem using Hungarian method.							
CO3	Able to understand the basic definitions, Two-person Zero-sum games, Pure and mixed strategy, Principle of Dominance, Graphical method,							
	Solution of games by linear programming method. Decision Theory: Introduction, Elements of decision problem, Types of decision making							
	environment, Decision tree.							
CO4	Able to explain Sequencing: Basic assumptions, Processing of n-Jobs on 2-Machines, n-Jobs on 3- Machines and 2-Jobs on k-Machines.							
	Replacement Problems: Replacement of items that deteriorate with time, Replacement of items that fails suddenly - Individual							
	replacement policy and Group replacement policy							
CO5	Able to explain Inventory Models, Types of inventory models, Various inventory costs, Deterministic inventory models, Economic order							
	quantity, Price breaks- one, two, n-price breaks, Single period probabilistic inventory models.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Linear Programming	Linear programming problem (LPP), Formulation of linear programming problem, Graphical method Simpley method Big M method Two Phase method Brimal & Dual	8	CO1
1	Linear Programming	problem.	0	
	Transportation and	Various method of finding initial basic feasible solution of transportation problem,	8	CO2
2	Assignment Problem	Solution of assignment problem using Hungarian method and Variations in assignment problem		
		Basic definitions, Two-person Zero-sum games, Pure and mixed strategy, Principle of	8	CO3
3	Game Theory &	Dominance, Graphical method, Solution of games by linear programming method.:		
	Decision Theory	Decision tree.		
	Sequencing &	Basic assumptions, Processing of n-Jobs on 2-Machines, n-Jobs on 3-Machines and 2-Jobs	8	CO4
4	Problems	on k-Machines. Replacement of items that deteriorate with time, Replacement of items that fails suddenly - Individual replacement policy and Group replacement policy.		
_		Types of inventory models, Various inventory costs, Deterministic inventory models,	8	CO5
5	Inventory Models	Economic order quantity, Price breaks- one, two, n-price breaks, Single period probabilistic inventory models.		
Refere	nce Books:			
1 H.A.	TAHA "Operations Rese	arch- An Introduction" Pearson.		
2. K.S	warup, P.K.Gupta and A.	Manmohan, "Operations Research", S. Chand.		
3. Hille	er And Liebarman, "Intro	duction to Operations Research", McGraw Hill Company.		
4. J.K.	Sharma, "Operations Res	earch ", Pearson.		
e-Lea	rning Source:			
1. <u>h</u>	ttps://www.youtube.com	/watch?v=be9e-Q-jC-0		
2 1	ttps://www.youtube.com	/watch?v=bO5_PPRPiG4		

3. <u>https://www.youtube.com/watch?v=jauhoR7w1YM</u>

				С	ourse Arti	culation M	atrix: (Ma	pping of COs w	ith POs and	PSOs)		
PO- PSO	P O	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO	1											
CO1	3	3	2	2	2	2	2	3	3	2	3	3
CO2	2	3	3	2	2	3	2	2	2	3	2	3
CO3	2	2	2	2	3	2	3	2	3	2	3	2
CO4	2	3	3	3	2	2	2	2	2	3	2	2
CO5	2	2	3	2	2	2	2	2	3	2	2	3
			1	I- Low Cor	relation; 2	- Moderate	e Correlati	on; 3- Substant	ial Correlatio	n		

Name & Sign of Program Coordinator Sign & Seal of HoD

Effective from Session	Effective from Session: 2015 - 16									
Course Code	MT508	Title of the Course	Fluid Dynamics	L	Т	Р	С			
Year	II	Semester	III	3	1	0	4			
Dro Doquisito	B.Sc. with	Co requisito								
r re-Kequisite	Mathematics	Co-requisite								
	Students will be able to learn the concepts and mathematical understanding of Fluid Dynamics. They will understand the									
	physical and mathematical formulation of non viscous fluids and their solutions and can develop the idea of source, sink and									
Course Objectives	doublet and obtain complex potentials. Also Understand, formulate and solve the equations of motion under different									
	conditions. Students will be able to understand the similarity of the fluids, obtain and solve the differential equations of viscous									
	incompressible fluid under specified boundary conditions									

	Course Outcomes								
CO1	Develop mathematical understanding of fluid Dynamics problems.								
CO2	Understand the various concepts and relations of fluid and understand the physical and mathematical formulation of non viscous fluids and their								
	solutions.								
CO3	Understand and develop the idea of source, sink and doublet and obtain complex potentials								
CO4	Able to understand, derive and solve the two dimensional equations of fluid motion of circular, ellipticand coaxial cylinders. Derive and solve								
	the equation of motion of viscous fluid and obtain the energy equation, vorticity and circulation.								
CO5	Apply the dimensional analysis to obtain the dimensionless numbers to express the fluid motion independently. Obtain, solve and analyze								
	Navier-Stoke equation of motion of viscous fluid betweenparallel plates and of concentric rotating cylinders to find the velocity and								
	temperature distribution function of the fluid.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
		Equation of motion - Lagrange's and Euler's equation of motion-Bernoulli's theorem -		CO1
1	Unit 1	Stream functions - Irrotational motion in two-dimensions-Complex velocity potential sources-	8	
		Sinks, doublets and their images-Milne-Thompson Circle theorem.		
		Two dimensional irrotational motion produced by motion of Circular, Co-axial and elliptic	8	CO2
2	Unit 2	cylinders in an infinite mass of liquid-Theorem of Blasius motion of a sphere through a liquid at		
		rest at infinity-Liquid streaming past a fixed sphere.		
	Unit 3	Fundamental Equations of Motion of Viscous Fluid; Equation of State, Equation of	8	CO3
3		Continuity, Navier-Stokes (NS) Equations (equation of Motion, Equation of Energy,		
		Streamlines & Pathlines, Vorticity and Circulation (Kelvin'sCirculation Theorem).	-	
4	Unit 4	Dynamical Similarity (Reynold's Law), Inspection Analysis-Dimensional Analysis,	8	CO4
4		Buckingnam $-\pi$ -incorem, and its Applications π -products and coefficients, Non-dimensional parameters and their physical importance. Exact Solutions of the N S Equations		
	Unit 5	Steady Motion between parallel plates: Velocity distribution & Temperature Distribution Plane	8	C05
5	Unit 5	Couette flow, generalized plane Couette flow. Flow between two concentric Rotating	Ū	005
-		Cylinders: Velocitydistribution & Temperature distribution.		
Refere	nce Books:			
1.	W.H. Besaint and	A.S.Ramsay, A Treatise on Hydromechanics, Part-II. CBS Publishers, Delhi, 1988.		
2.	F. Chorlton, Text	book of Fluid Dynamics, CBS Publishers, Delhi, 1985.		
3.	G.K. Batchelor, A	In Introduction to Fluid Dynamics, Cambridge University Press (1970).		
4.	C.S. Yih, Fluid M	lechanics, McGraw-Hill Book, Company		
e-Les	arning Source			
1 1	ttage//matal ag in /	mag/112105171/		
1. <u>r</u>	ittps://nptei.ac.in/cot	IISes/1121031/1/		
2. <u>h</u>	ttp://www3.dicca.un	ige.it/rrepetto/linked-files/fluid-dynamics-lecture-notes.pdf		

3. <u>http://web.engr.uky.edu/~acfd/me330-lctrs.pdf</u>

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO												
CO1	3	2	2	1	1	1	2	2	3	3	2	1
CO2	3	2	1	1	1	2	2	2	3	3	2	1
CO3	3	1	1	1	1	2	2	2	3	3	2	1
CO4	3	1	1	1	1	2	2	2	3	3	2	1
CO5	3	2	1	1	1	2	2	2	3	3	2	1

Name & Sign of Program Coordinator	Sign & Seal of HoD	

Effective from Session: 2019 - 20									
Course Code	MT509	Title of the Course	Special Functions	L	Т	Р	С		
Year	II	Semester	III	3	1	0	4		
Pre-Requisite	B.Sc. with Mathematics	Co-requisite							
Course Objectives	The interplay bet special functions, systems of orthog	the interplay between mathematical analysis and physical understanding. • To investigate and derive the properties of becial functions, inter-relations between such functions and their representations in various forms. • Certain specific vstems of orthogonal polynomials and their properties.							

	Course Outcomes										
CO1	Solve, expand and interpret solutions of many types of important differential equations by making use of special functions and orthogonal										
	polynomials.										
CO2	Derive the formulas and results of certain classical special functions and orthogonal polynomials by different methods.										
CO3	Derive the generating relations involving special functions.										
CO4	Understand purpose and functions of the gamma and beta functions, and Transformation.										
CO5	Achieve the knowledge to analyse the problems using the methods of special functions and orthogonal polynomials, which helps in exploring										
	the role of special functions and orthogonal polynomials in other areas of mathematics.										

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Gamma and Beta functions	The Euler or Macheroni Constant, Gamma function, A series for gamma function, Difference equation $Gamma(Z+1) = Z Gamma(Z)$, Euler's Integral for $Gamma(z)$, Beta function, Value of $Gamma(z)Gamma(1-z)$, Factorial function, Legender duplication formula, Gauss multiplication Theorem.	8	CO1
2	Hypergemetric and Generalized hypergeometric function	Definition and integral representation of Gauss hypergeometric function 2F1 (a,b;c;z). Contagious function relation, Hypergeometric differential equations and its solutions, F(a,b;c;z) as function of its parameters, Elementary series manipulation, Simple transformations and reduction formulas.	8	CO2
3	Bessel and Legendre polynomials	Definition of Jn(Z), Bessel differentia equation, generating functions, recurrence relations and integral representation; Generating function Legendre polynomials, Rodrigue's formula, Recurrence relations and hypergeometric form of Legendre polynomials, First and second kind integral transforms, orthogonally.	8	CO3
4	Hermite Polynomials	Definition of Hermite Polynomials Hn(x), Pure and recuerrence relations, Rodrigue's formula, other generating functions, Orthogonally, Expansion polynomials.	8	CO4
5	Laguerre Polynomials	The Laguerre Polynomials Ln(x), generating function, pure and differential recurrence relations, Rodrigues formula, Orthogonally, Expansion of Polynomials	8	CO5
Refere	nce Books:			
1. E. D	. Rainville: Special Func	tions, Chelsea Publishing Co., Bronx, New York, Reprint, 1971.		
2. Sara	n, N., Sharma S.D., and '	Trivedi: Special functions with applications, Pragati Prakashan, 1986.		
3. Leb	dev, N.N: Special function	ons and Their Applications, Prentice Hall, Englewood Cliffs, New Jersey, USA, 1995		
e-Lea	rning Source:			
1. 1	https://meet.google.com/ap	j-ammk-bhp, https://web.mst.edu/~lmhall/SPFNS/spfns.pdf		
2. 1	https://meet.google.com/t	oyc-ckzd-ghr, http://web.math.ku.dk/~henrikp/wosfa/book-of-abstracts.pdf		

3. <u>https://meet.google.com/apj-ammk-bhp</u>

				C	ourse Arti	culation M	atrix: (Ma	pping of COs w	vith POs and	PSOs)		
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO												
CO1	3	1	1		1	1	1	3	3	2	2	3
CO2	3	1	2		3	1	1	3	3	3	2	3
CO3	3	1	2		3	1	1	3	3	3	3	2
CO4	3	1	1		3	1	1	3	2	2	3	3
CO5	3	1	1		2	2	1	3	2	3	2	3
							a					

Name & Sign of Program Coordinator	Sign & Seal of HoD

Integral University, Lucknow Department of Mathematics & Statistics <u>Study and Evaluation Scheme (w.e.f. 2020-21)</u>

M. Sc. (Mathematics)

IInd year / IVth Semester

	Cours		5						Course Title	urs e od Course Title	Cours e cod Course Title	rrs 2 Course Title	-	h	Period Per r/week/s	em		Evalu	ation Sche	eme			Tota			A	ttributes				
S. No.	e cod Course Title e	Course Title	lype of Paper	L	т	Р	ст	TA	Total	ESE	Sub. Total	Credit	l Cred its	Employabi lity	Entrepr eneurs hip	Skill Developm ent	Gender Equality	Environ ment & Sustaina bility	Pı Human ssi Value Et	ofe ona I hics											
THEOR	IES																														
1	MT510	Mechanics	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		v				9	AND STATE AND ALL SHA AND WEALT FEATURE										
2	MT511	Advanced Functional Analysis	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V				9											
3	MT512	Topology	Core	03	01	00	40	20	60	40	100	3:1:0	4	V		V				9											
4	MT513	Magneto Hydrodynamics	Elective											V		V				18	3 elmate										
	MT514	Mathematical Modelling and Simulation	Elective	03	01	00	40	20	60	40	100	3:1:0	4	V		V				1	2 RESPONSIBLE CONSUMPTION AND PRODUCTION										
	MT515	Calculus of Variations	Elective													V		V				9									
PROJE	ст																														
5	MT516	*Project	Core	06	00	00	00	00	00	200	200	06	06	V		V				√ 9											
			Total	18	04	00	160	80	240	360	600	22	22																		

CT = Class Test; TA = Teacher's Assessment,; ESE = End Semester Examination; Sessional = CT + TA; Subject Total = Sessional + ESE

Total Credits = 24 + 22 + 24 + 22 = 92

* The Evaluation scheme for Project

Project	Course Code	Project Dissertation	Presentation	Viva-Voce	Total
Project	MT516	100	50	50	200

Effective from Session: 2015 - 16											
Course Code	MT510	Title of the Course	Mechanics	L	Т	Р	С				
Year	II	Semester	IV	3	1	0	4				
Pre-Requisite	B.Sc. with Maths	Co-requisite									
Course Objectives	The purpose of principal of ap successfully co	Maths Description The purpose of this postgraduate course is to impart basic and key knowledge of classical mechanics. By using the principal of applied mathematics to obtain quantitative relations which are very important for higher studies. After successfully completion of course, the student will able explore subject into their respective dimensions									

	Course Outcomes
CO1	Find and interpret General force system, equipollent force system, equilibrium conditions, couples, moments, general motion of rigid body,
	moments and product of inertia and their properties, Kinetic energy of rigid body
CO2	Evaluate and Interpret Eulers's dynamical equations, motion of rigid body with a fix point, generalized co-ordinates, Lagrange's equation,
	applications of Lagaragian formulation and D' Alembert's Principle.
CO3	Describe the Euler's equations for functional containing first order derivatives and one independent variable.
CO4	Find and Interpret the functional dependent on one and two functions, Jacobian and Legendre conditions.
CO5	Describe Hamilton Principle, Canonical equation of Hamilton, Hamilton equation of variation principle

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Unit 1	General force system, equipollent force system, equilibrium conditions, couples, moments, general motion of rigid body, moments and product	8	CO1
2	Unit 1	Eulers's dynamical equations motion of rigid body, generalized co-ordinates, Lagrange's equation and its applications and D' Alembert's Principle.	8	CO2
3	Unit 1	Euler's equations for functional containing first order derivatives and one independent variable, Externals and functional dependent on more than one independent variable, Variation problems in parametric forms, Functional dependent on higher order derivatives	8	CO3
4	Unit 1	Functional dependent on one and two functions, one sided variation, Second variations Jacobian and Legendre conditions, variation principle of least action	8	CO4
5	Unit 1	Hamilton Principle, Cyclic coordinates, Canonical equation of Hamilton, Hamilton equation of variation principle, Principle of least action	8	CO5
Refere	nce Books:			
1. J.L.	Synge and B.A. Grif	fith: Principle of mechanics, McGraw-Hill Book Company		
2. H. G	oldstein: Classical M	Aechanics: Second Edition, Narosa Publishing House (1980)		
e-Lea	arning Source:			
1. http:	//www.astro.caltech.	edu/~golwala/ph106ab/ph106ab_notes.pdf		
2. https	://www.voutube.com	n/watch?v=ApUFtLCrU90		

				С	ourse Arti	culation M	atrix: (Ma	pping of COs w	ith POs and I	PSOs)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	1	2	1	1	3	3	2	2	1
CO2	3	2	1	1	2	1	2	3	3	3	2	2
CO3	2	2	1	1	2	1	1	2	2	3	2	1
CO4	3	2	2	1	1	1	1	3	3	3	3	2
CO5	2	2	1	1	2	1	2	2	3	2	2	1

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2015 - 16											
Course Code	MT511	Title of the Course	ADVANCED FUNCTIONAL ANALYSIS	L	Т	Р	С				
Year	II	Semester	IV	3	1	0	4				
Pre-Requisite	B.Sc.	Co-requisite									
Course Objectives	The course give the main brance subject into the	The course gives an introduction to spectral theory, compact linear operators and approximation theory which is one of the main branches of modern functional analysis. After successfully completion of course, the student will able to explore subject into their respective dimensions.									

	Course Outcomes								
CO1	Define and describe Hilbert-Adjoint operator, self adjoint, unitary and normal operators, adjoint operator, dual spaces, reflexive spaces,								
	strong and weak convergence, convergence of sequence of operators and functional.								
CO2	Define and describe Spectral Theory in finite dimensional Normed Spaces, Basic Concepts, Spectral Properties of Bounded Linear								
	Operators, Use of Complex Analysis in Spectral Theory, Banach Algebra.								
CO3	Define and describe Compact Linear Operator on Normed Spaces, Properties of Compact Linear Operator, Spectral Properties of Compact								
	Linear Operators on Normed Spaces, Operator Equations Involving Compact Linear Operators, Further Theorem of Fredholm Type.								
CO4	Describe Spectral Properties of Bounded Self – Adjoint Linear Operators, Positive Operators, Square Roots of a Positive Operator, Projection								
	Operators, Further Properties of Projections, Spectral Family of a Bounded Self – Adjoint Linear Operators, Spectral Representation of								
	Bounded Self Adjoint Linear Operators.								
CO5	Define and describe Strict convexity, uniform convexity, Approximation in Normed Spaces, Existence and Uniqueness, Uniform								
	Approximation, Chebyshev polynomial, Best approximation, approximation in Hilbert space								

Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
Operators and Reflexive spaces	Hilbert–Adjoint operator, self adjoint, Unitary and normal operators, adjoint operator, Dual spaces, reflexive spaces, strong and weak convergence, convergence of sequence of operators and functional.	8	CO1
Spectral Theory of Linear Operators in Normed	Spectral Theory in Finite Dimensional Normed Spaces, Basic Concepts, Spectral Properties of Bounded Linear Operators, Use of Spaces Complex Analysis in Spectral Theory, Banach Algebra.	8	CO2
Compact linear Operators on Normed spaces	Compact Linear Operator on Normed Spaces, Properties of Compact Linear Operator, Spectral Properties of Compact Linear Operator Their Spectrum on Normed Spaces, Operator Equations Involving Compact Linear Operators, Further Theorem of Fredholm Type.	8	CO3
Spectral Theory of Bounded Self – Adjoint Linear	Spectral Properties of Bounded Self – Adjoint Linear Operators, Positive Operators, Square Roots of a Positive Operator, Projection Operator Operators, Further Properties of Projections, Spectral Family of a Bounded Self – Adjoint Linear Operators, Spectral Representation of Bounded Self Adjoint Linear Operators.	8	CO4
Approximation Theory	Strict convexity, uniform convexity, Approximation in Normed Spaces, Existence and Uniqueness, Uniform Approximation, Chebyshev polynomial, Best approximation, approximation in Hilbert space.	8	CO5
nce Books:			
ductory Functional Anal	ysis with Applications by Erwin Kreyszig(1989).		
duction to Functional A 2015).	nalysis with Applications by A.H. Siddiqui, Khalil Ahmad and P. Manchanda, Real World Educa	tion Publishe	ers, New
	Title of the Unit Operators and Reflexive spaces Spectral Theory of Linear Operators in Normed Compact linear Operators on Normed spaces Spectral Theory of Bounded Self – Adjoint Linear Approximation Theory ence Books: oductory Functional Anal couction to Functional Anal couction to Functional Anal	Title of the UnitContent of UnitOperators and Reflexive spacesHilbert–Adjoint operator, self adjoint, Unitary and normal operators, adjoint operator, Dual spaces, reflexive spaces, strong and weak convergence, convergence of sequence of operators and functional.Spectral Theory of Linear Operators in NormedSpectral Theory in Finite Dimensional Normed Spaces, Basic Concepts, Spectral Properties of Bounded Linear Operators, Use of Spaces Complex Analysis in Spectral Theory, Banach Algebra.Compact linear Operators on Normed spacesCompact Linear Operator on Normed Spaces, Properties of Compact Linear Operator, Spectral Properties of Compact Linear Operator, Spectral Properties of Projections Involving Compact Linear Operators, Further Theorem of Fredholm Type.Spectral Theory of Bounded Self – Adjoint LinearSpectral Properties of Bounded Self – Adjoint Linear Operators, Spectral Repersentation of Bounded Self Adjoint Linear Operators, Spectral Representation of Bounded Self Adjoint Linear Operators, Spectral Family of a Bounded Self – Adjoint Linear Operators, Spectral Representation of Bounded Self Adjoint Linear Operators.Approximation TheoryStrict convexity, uniform convexity, Approximation in Normed Spaces, Existence and Uniqueness, Uniform Approximation, Chebyshev polynomial, Best approximation, approximation in Hilbert space.nec Books:Detectional Analysis with Applications by A.H. Siddiqui, Khalil Ahmad and P. Manchanda, Real World Educa 2015).	Title of the UnitContent of UnitContact Hrs.Operators and Reflexive spacesHilbert-Adjoint operator, self adjoint, Unitary and normal operators, adjoint operator, Dual spaces, reflexive spaces, strong and weak convergence, convergence of sequence of operators and functional.8Spectral Theory of Linear Operators in NormedSpectral Theory in Finite Dimensional Normed Spaces, Basic Concepts, Spectral Properties of Bounded Linear Operator, Use of Spaces Complex Analysis in Spectral Theory, Banach Algebra.8Compact linear Operators on Normed spacesCompact Linear Operator on Normed Spaces, Properties of Compact Linear Operator, Spectral Properties of Compact Linear Operator Their Spectrum on Normed Spaces, Operators on Type.8Spectral Theory of Bounded Self – Adjoint LinearSpectral Properties of Bounded Self – Adjoint Linear Operators, Further Theorem of Fredholm Type.8Approximation TheorySpectral Properties of Bounded Self – Adjoint Linear Operators, Spectral Representation of Bounded Self Adjoint Linear Operators, Projections, Spectral Family of a Bounded Self – Adjoint Linear Operators, Spectral

3. Applied Functional Analysis by A.H. Siddiqui, Real World Education Publishers, New Delhi (2015).

4. Elements of the Theory of Functions and Functional Analysis by W. Rudin

e-Learning Source:

1. https://www.youtube.com/watch?v=ZCq9zynbY_Y

2. https://cosmolearning.org/video-lectures/spectral-theory

3. https://cosmolearning.org/video-lectures/approximation-theory/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO- PSO CO	P 0 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	1	1	1	2	2	2	3	3	3	2	3
CO2	3	2	1	1	2	1	2	3	3	3	2	3
CO3	2	2	1	1	2	1	1	3	3	3	3	3
CO4	3	2	2	1	1	1	1	3	3	2	3	3
CO5	3	2	1	1	2	1	2	3	3	3	2	3
			1	- Low Cor	relation; 2	- Moderat	e Correlati	on; 3- Substant	ial Correlatio	on		
		Na	ame & Sigr	n of Progra	m Coordin	nator		Sign & Seal of	f HoD			

Effective from Session: 2019 - 20										
Course Code	MT512	Title of the Course	Topology	L	Т	Р	С			
Year	П	Semester	IV	3	1	0	4			
Pre-Requisite	M.Sc (Mathematics) First year	Co-requisite								
Course Objectives	The purpose of this course is an introdu spaces, and quotient spaces, and propertie to fundamental groups and covering space	iction to topological spaces s like compactness and con s.	s. It deals with constructions nectedness. The course conclu	like s ides w	subspace ith an in	es, proc ntroduc	luct tion			

		Course Outcomes
(CO1	Students will gain an understanding to how the topology on a space is determined by the collection of open sets, by the collection of closed
		sets, or by a basis of neighbourhoods at each point, and you know what it means for a function to be continuous.
(CO2	Students will be able to Use continuous functions and homeomorphisms to understand structure of topological spaces.
(CO3	Students will be able to know what it means for a metric space to be complete, and you can characterize compact metric spaces, compact
		spaces, and locally compact spaces.
	CO4	Students will be able to know the definition and basic properties of connected spaces, path connected spaces and familiar with the Urysohn
		lemma and the Tietze extension theorem, and you can characterise metrizable spaces.
(CO5	Students will gain an understanding of approaches to product Topology (finite & infinite), Tychonoff product topology in terms of
		standard sub base and its characterizations.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Topological spaces	Definition and examples of Topological spaces, closed sets, closure, neighborhoods, interior, exterior, boundary and accumulation point of a set, derived sets, dense sets, bases and sub bases, relative topology, Subspaces, Finite intersection property.	8	CO1					
2	Homeomorphism and separation axioms	Eulers's dynamical equations motion of rigid body, generalized co-ordinates, Lagrange's equation and its applications and D' Alembert's Principle.	8	CO2					
3	Compactness Compactness, Basic properties of compactness, compactness and finite intersection property, Bolzano-Weierstrass property, sequential compactness, local compactness and one point compactification, connected sets in the real line								
4	Connectedness	Connectedness, connected spaces and their properties, local connectedness, path connectedness, components, locally connected spaces Urysohn's lemma, Teitz extension theorem, Para compactness, characterizations of para compactness in regular spaces	8	CO4					
5	5 Product Topology (finite & infinite), Tychonoff product topology in terms of standard sub base and its characterizations, product topology and separation axioms, connectedness and compactness(including the Tychonoff's theorem), countability and product spaces.								
Refere	nce Books:								
1. G. B	redon, Topology and Geo	ometry, Springer-Verlag, 2005							
2. J. D	ugundji, Topology, Allyı	n and Bacon, 1970.							
3. J. L.	Kelly, General Topology	v, Springer-Verlag, 2005.							
4. J. R.	Munkers, Topology, Sec	ond Edition, Pearson Education, 2003.							
5. S. Willard, General Topology, Dover Publications, N. Y. 2004.									
e-Lea	e-Learning Source:								
1. https	1. https://nptel.ac.in/courses/111/106/111106054/								
2. https	://www.youtube.com/wa	tch?v=kOFtfmCpNg0							
3. http:	//jde27.uk/tg/topsp02.htm	าไ							

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	1	1		2	1	1	3	2	2	3	1
CO2	3	1	2		3	1	1	3	2	3	2	1
CO3	3	1	2		3	1	1	3	3	2	2	2
CO4	3	1	1		2	1	1	3	2	2	3	2
CO5	3	1	1		2	1	1	3	3	2	2	2

Effective from Session: 2	2015 - 16						
Course Code	MT515	Title of the Course	Calculus of Variations	L	Т	Р	С
Year	Π	Semester	IV	3	1	0	4
Pre-Requisite	Graduation with Mathematics	Co-requisite					
Course Objectives	The calculus of variations concerns pro- system that has functional degrees of mathematics and physics. They range minimizes its surface area, to finding importantly, the principle of least action this course it is shown that such variate equations. Furthermore, the minimizint solutions to these equations. These methods	oblems in which one wis f freedom. Many impor from the problem in geo g the configuration of a on is now the standard wa ational problems give riss g principle that underlies hods have far reaching ap	thes to find the minima or extrema tant problems arise in this way a metry of finding the shape of a so piece of elastic that minimizes it ay to formulate the laws of mechan e to a system of differential equati s these equations leads to direct m plications and will help develop stud	of sor ap bub s ener ics an- ons, th ethods dent's	ne quai pure a oble, a s gy. Pe d basic he Eule for an techniq	ntity ov nd app surface thaps n physics r-Lagra alyzing ue.	er a lied that nost . In nge the

	Course Outcomes							
CO1	Can understand what functional, strong and weak variations are, and have some appreciation of their applications.							
CO2	Can use the Euler-Lagrange equation or its first integral to find differential equations for stationary paths,							
CO3	Develop an understanding of problem of Minimum surface of revolution, Minimum energy problem, Brachistochrone Problem, Variational							
	Notation, Variational Problems involving several functions.							
CO4	Determine the solution of differential equations with initial and boundary value problems.							
CO5	Visualize and deal with problems consisting of Hamilton's Principle, Lagrange's Equation, Hamilton's Equation. Variational Problems							
	with Movable boundaries.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Unit 1	Definitions of functional, Strong and weak variations, Derivations of Euler's Equation, Other forms of Euler's Equation, Special Cases, Examples, Fundamental Lemma of Calculus of Variations.	8	CO1
2	Unit 2	The problem of Minimum surface of revolution, Minimum energy problem, Brachistochrone Problem , Variational Notation , Variational Problems involving several functions	8	CO2
3	Unit 3	Isoperimetric problems, Examples, Euler's Equations in two independent Variables, Variational Problems in Parametric form, Functional dependent on Higher Order Derivatives, Euler Poisson Equation	8	CO3
4	Unit 4	Variation of functional, Euler-Lagranges equation, Necessary and sufficient conditions for extrema, Variational methods for boundary problems in ordinary and partial differential equations	8	CO4
5	Unit 5	Application of Calculus of Variation, Hamilton's Principle, Lagrange's Equation, Hamilton's Equation. Variational Problems with Movable boundaries, Simplest problem with movable boundaries, Examples, Problems with movable boundaries for functional of the form $\int (x, y, z, y', z') dx dy dz$ and $\int (x, y, y', y'') dx dy dz$, Examples	8	CO5
Refere	nce Books:			
1. L.El	sgolts: Differential Equat	ion and Calculus Of Variation.		
2. W.R	.Runde: Integral equation	as and Applications.		
3. Path Delhi	an, M.A, Benarji, P.K, Cl 2004	hauraisa, V.B.L, Goyal, M.C: Special Functions and Calculus of variations, Indus Valley Publica	tions, Jaipur	, New

e-Learning Source:

1. https://www.youtube.com/watch?v=GiPOQC5nYMs

2. https://youtu.be/WPIBrzjI1KI?t=52

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO												
CO1	3	2	1	1	2	2	3	3	3	2	3	3
CO2	3	2	1	1	2	1	3	3	3	2	1	3
CO3	2	2	1	1	2	1	3	3	2	2	3	3
CO4	3	2	2	1	1	1	3	3	3	3	2	3
CO5	3	2	1	1	2	1	3	3	2	3	2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD